Advertisement

Hydrobiologia

, Volume 616, Issue 1, pp 247–258 | Cite as

Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan

  • Wen-Cheng Liu
  • Wen-Tseng Lo
  • Jennifer E. Purcell
  • Hao-Hsien Chang
JELLYFISH BLOOMS

Abstract

Jellyfish blooms cause problems worldwide, and they may increase with global warming, water pollution, and over fishing. Benthic polyps (scyphistomae) asexually produce buds and small jellyfish (ephyrae), and this process may determine the population size of the large, swimming scyphomedusae. Environmental factors that affect the asexual reproduction rates include food, temperature, salinity, and light. In this study, polyps of Aurelia aurita (L.), which inhabit Tapong Bay, southwest Taiwan, were tested in nine combinations of temperature (20, 25, 30°C) and light intensity (372, 56, and 0 lux) in a 12 h light–12 h dark photoperiod. Production of new buds decreased with warmer temperature and stronger light intensity. Warm temperature accelerated strobilation and increased the daily production of ephyrae. The proportion of ephyrae of total asexual reproduction (new buds + ephyrae) increased dramatically in warmer temperature and more light. Survival was reduced in the highest temperature. Strobilation did not occur in the lowest temperature in darkness. All measures of total asexual reproduction indicated that mid- to high temperatures would lead to faster production of more jellyfish. Continuous high temperatures might result in high polyp mortality. Light affected asexual reproduction less than did temperature, only significantly accelerating the strobilation rate. Because the interactive effects of light and temperature were significant for the time period polyps survived and the potential production of jellyfish polyp−1, combined light and temperature effects probably are important for strobilation in situ.

Keywords

Jellyfish Climate Strobilation Bloom 

Notes

Acknowledgments

We would like to thank Mr. T. M. Hsiao of the National Museum of Marine Biology and Aquarium, who provided the polyps, and also all members of marine zooplankton laboratory of National Sun Yet-Sen University. This research was supported by grants from the National Science Council and the Ministry of Education of the Republic of China to Lo, W. T. [NSC95-2611-M 110-006, 95-C030220 (Kuroshio project)].

References

  1. Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Canadian Journal Zoology 66: 1913–1927.CrossRefGoogle Scholar
  2. Arai, M. N., 1997. A functional biology of Scyphozoa. Chapman & Hall, London: 316.Google Scholar
  3. Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.CrossRefGoogle Scholar
  4. Arai, M. N., This volume. Are podocysts important to the formation of scyphozoan blooms? Hydrobiologia.Google Scholar
  5. Attrill, M. J., J. Wright & M. Edwards, 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52: 480–485.Google Scholar
  6. Bailey, K. M. & E. D. Houde, 1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Advances in Marine Biology 25: 1–83.CrossRefGoogle Scholar
  7. Brewer, R. H., 1978. Larval settlement behaviour in the jellyfish Aurelia aurita (Linnaeus) (Scyphozoa: Semaeostomae). Estuaries 1: 121–122.CrossRefGoogle Scholar
  8. Chen, E. L., 2002. Population dynamics and feeding of the moon jellyfish (Aurelia aurita) in Tapong Bay, southwestern Taiwan. Masters thesis, National Sun Yat-sen University, Taiwan: 74 pp.Google Scholar
  9. Custance, D. R. N., 1964. Light as an inhibitor of strobilation in Aurelia aurita. Nature 204: 1219–1220.CrossRefGoogle Scholar
  10. Dawson, M. N., L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451: 131–144.CrossRefGoogle Scholar
  11. Dawson, M. N., A. Sen Gupta & M. H. England, 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences 102:11968–11973. www.pnas.org_cgi.
  12. Fitt, W. K. & K. Costley, 1998. The role of temperature in survival of the polyp stage of the tropical Rhizostome jellyfish Cassiopea xamachana. Journal of Experimental Marine Biology and Ecology 222: 79–91.CrossRefGoogle Scholar
  13. Gröndahl, F., 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata, C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Marine Biology 97: 541–550.CrossRefGoogle Scholar
  14. Hamner, W. M., P. P. Hamner & S. W. Strand, 1994. Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Marine Biology 119: 347–356.CrossRefGoogle Scholar
  15. Hiromi, J., T. Yamomoto, Y. Koyama & S. Kadota, 1995. Experimental study on predation of scyphopolyp Aurelia aurita. Bulletin of the College of Agriculture and Veterinary Medicine, Nihon University 52:126–130. (in Japanese; English abstract).Google Scholar
  16. Hoover, R.A. & J. E. Purcell, This volume. Substrate preferences of scyphozoan Aurelia labiata polyps among common dock-building materials. Hydrobiologia.Google Scholar
  17. Ishii, H. & U. Båmstedt, 1998. Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). Journal of Plankton Research 20: 805–816.CrossRefGoogle Scholar
  18. Ishii, H. & H. Shioi, 2003. The effects of environmental light condition on strobilation in Aurelia aurita polyps. Sessile Organisms 20: 51–54.Google Scholar
  19. Kakinuma, Y., 1975. An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. The Bulletin of the Marine Biological Station of Asamushi 15: 101–113.Google Scholar
  20. Kang, Y. S. & M. S. Park, 2003. Occurrence and food ingestion of the moon jellyfish (Scyphozoa: Ulmariidae: Aurelia aurita) in the southern coast of Korea in summer. Journal of the Korean Society of Oceanography 8: 199–202. (in Korean with English abstract).Google Scholar
  21. Kawahara, M., S. I. Uye, K. Ohtsu & H. Iizumi, 2006. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology Progress Series 307: 161–173.CrossRefGoogle Scholar
  22. Kideys, A. E. & A. C. Gücü, 1995. Rhopilema nomadica: a poisonous Indo-Pacific scyphomedusan new to the Mediterranean coast of Turkey. Israel Journal of Zoology 41: 615–617.Google Scholar
  23. Lo, W.-T., J. E. Purcell, J.-J. Hung, H.-M. Su & P.-K. Hsu, 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES Journal of Marine Science 65: 453–461.Google Scholar
  24. Loeb, M. J., 1973. The effect of light on strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha. Marine Biology 20: 144–147.CrossRefGoogle Scholar
  25. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiology 451: 229–246.CrossRefGoogle Scholar
  26. Lucas, C. H. & J. A. Williams, 1994. Population dynamics of the scyphomedusa Aurelia aurita in Southampton Water. Journal of Plankton Research 16: 879–895.CrossRefGoogle Scholar
  27. Ma, X. & J. E. Purcell, 2005a. Effects of temperature, salinity and predators on mortality of and colonization by the invasive hydrozoan, Moerisia lyonsi. Marine Biology 147: 215–224.CrossRefGoogle Scholar
  28. Ma, X. & J. E. Purcell, 2005b. Temperature, salinity and prey effects on polyp versus medusa bud production of the invasive hydrozoan, Moerisia lyonsi. Marine Biology 147: 225–234.CrossRefGoogle Scholar
  29. Martin, L. E., 1999. The population biology and ecology of Aurelia sp. (Scyphozoa: Semaeostomeae) in a tropical meromictic marine lake in Palau, Micronesia. Ph.D. thesis, University of California, Los Angeles: 250 pp.Google Scholar
  30. Mayer, A. G., 1910. Medusae of the World. III. The Scyphomedusae. Carnegie Institute of Washington, Washington: 499–735.Google Scholar
  31. Mianzan, H. W. & P. F. S. Cornelius, 1999. Cubomedusae and scyphomedusae. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. I. Backhuys Publishers, Leiden: 513–559.Google Scholar
  32. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  33. Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451–459.CrossRefGoogle Scholar
  34. Molinero, J. C., F. Ibanez, P. Nival, E. Buecher & S. Souissi, 2005. North Atlantic climate and northwestern Mediterranean plankton variability. Limnology and Oceanography 50: 1213–1220.Google Scholar
  35. Möller, H., 1980. Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Marine Biology 60: 123–128.CrossRefGoogle Scholar
  36. Olive, P. J. W., 1985. Physiological adaptation and the concepts of optimal reproductive strategy and physiological constraint in marine invertebrates. In Laverack, M. S. (ed.), Physiological Adaptations of Marine Animals. Symposia of the Society for Experimental Biology 39: 267–300.PubMedGoogle Scholar
  37. Purcell, J. E., 1985. Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bulletin of Marine Science 37: 739–755.Google Scholar
  38. Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators; selective predation, feeding rates and effects on prey populations. Annales de l’Institut Oceanographique, Paris 73: 125–137.Google Scholar
  39. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.CrossRefGoogle Scholar
  40. Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan, Aurelia labiata. Marine Ecology Progress Series 348: 183–196.CrossRefGoogle Scholar
  41. Purcell, J. E. & M. N. Arai, 2001. Interaction of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.CrossRefGoogle Scholar
  42. Purcell, J. E., E. D. Brown, K. D. E. Stokesbury, L. H. Haldorson & T. C. Shirley, 2000. Aggregations of the jellyfish Aurelia labiata: abundance, distribution, associations with age–0 walleye pollock, and behaviors promoting aggregation in Prince William Sound, Alaska. U.S.A. Marine Ecology Progress Series 195: 145–158.CrossRefGoogle Scholar
  43. Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.CrossRefGoogle Scholar
  44. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.CrossRefGoogle Scholar
  45. Russell, F. S., 1970. The Medusae of the British Isles. II Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae. Cambridge University Press, London: 284.Google Scholar
  46. Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, western Baltic. Marine Biology 100: 507–514.CrossRefGoogle Scholar
  47. Shimomura, T., 1959. On the unprecedented flourishing of ‘Echizenkurage’ Stomolophus nomurai (Kishinouye), in the Tsushima Warm Current regions in autumn, 1958. Bulletin of Japan Sea Regional Fisheries Research Laboratory 7: 85–107. (in Japanese with English abstract).Google Scholar
  48. Spangenberg, D. B., 1967. Iodine induction of metamorphosis in Aurelia. Journal of Experimental Zoology 160: 1–10.CrossRefGoogle Scholar
  49. Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.Google Scholar
  50. Uye, S., N. Fujii & H. Takeoka, 2003. Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku. Plankton Biology and Ecology 50: 17–21.Google Scholar
  51. Uye, S. & Y. Ueta, 2004. Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan. Bulletin of the Japanese Society of Fisheries Oceanography 68: 9–19. (in Japanese with English abstract).Google Scholar
  52. Van Der Veer, H. W. & W. Oorthuysen, 1985. Abundance, growth and food demand of the scyphomedusan Aurelia aurita in the western Wadden Sea. Netherlands Journal of Sea Research 19: 38–44.CrossRefGoogle Scholar
  53. Watanabe, T. & H. Ishii, 2001. In situ estimation of the number of ephyrae liberated from polyps of Aurelia aurita on settling plates in Tokyo Bay, Japan. Hydrobiologia 451: 247–258.CrossRefGoogle Scholar
  54. Widmer, C. L., 2005. Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). Journal of the Marine Biological Association of the United Kingdom 85: 569–573.CrossRefGoogle Scholar
  55. Zaitsev, Y. P., 1992. Recent changes in the structure of the Black Sea. Fisheries Oceanography 1: 180–189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Wen-Cheng Liu
    • 1
  • Wen-Tseng Lo
    • 1
  • Jennifer E. Purcell
    • 1
    • 2
  • Hao-Hsien Chang
    • 1
  1. 1.Department of Marine Biotechnology and ResourcesNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC
  2. 2.Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA

Personalised recommendations