Advertisement

Hydrobiologia

, Volume 616, Issue 1, pp 51–65 | Cite as

Patterns of jellyfish abundance in the North Atlantic

  • Mark J. Gibbons
  • Anthony J. Richardson
JELLYFISH BLOOMS

Abstract

A number of explanations have been advanced to account for the increased frequency and intensity at which jellyfish (pelagic cnidarians and ctenophores) blooms are being observed, most of which have been locally directed. Here, we investigate seasonal and inter-annual patterns in abundance and distribution of jellyfish in the North Atlantic Ocean to determine if there have been any system-wide changes over the period 1946–2005, by analysing records of the presence of coelenterates from the Continuous Plankton Recorder (CPR) survey. Peaks in jellyfish abundance are strongly seasonal in both oceanic and shelf areas: oceanic populations have a mid-year peak that is more closely related to peaks in phyto- and zooplankton, whilst the later peak of shelf populations mirrors changes in SST and reflects processes of advection and aggregation. There have been large amplitude cycles in the abundance of oceanic and shelf jellyfish (although not synchronous) over the last 60 years, with a pronounced synchronous increase in abundance in both areas over the last 10 years. Inter-annual variations in jellyfish abundance in oceanic areas are related to zooplankton abundance and temperature changes, but not to the North Atlantic Oscillation or to a chlorophyll index. The long-term inter-annual abundance of jellyfish on the shelf could not be explained by any environmental variables investigated. As multi-decadal cycles and more recent increase in jellyfish were obvious in both oceanic and shelf areas, we conclude that these are likely to reflect an underlying climatic signal (and bottom-up control) rather than any change in fishing pressure (top-down control). Our results also highlight the role of the CPR data in investigating long-term changes in jellyfish, and suggest that the cnidarians sampled by the CPR are more likely to be holoplanktic hydrozoans and not the much larger meroplanktic scyphozoans as has been suggested previously.

Keywords

Pelagic cnidaria Ctenophora Seasonality Inter-annual Climate change Plankton 

Notes

Acknowledgements

CPR data used in this study were provided by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) and are freely available to all researchers (http://www.sahfos.ac.uk). The authors are grateful to all past and present members and supporters of the CPR survey, especially the shipping industry that voluntarily tows CPRs on regular routes and funders from UK and elsewhere. MJG is grateful to the Royal Society (London) and the National Research Foundation (South Africa) for funding. Dr Chris Lynam (University of St Andrews) is thanked for providing his scyphozoan data from the North Sea, and Dr Matthew Witt (University of Exeter) is kindly thanked for assistance with preparing Fig. 2. We are particularly grateful to Graeme Hays (University of Wales, Swansea), Kylie Pitt (Griffith University) and an anonymous reviewer for improving earlier versions of the manuscript.

References

  1. Arai, M. N., 1987. Population ecology of the hydromedusae of Massett Inlet, British Columbia. In Bouillon, J., F. Boero, F. Cicogna & P. F. S. Cornelius (eds), Modern Trends in the Systematics, Ecology and Evolution of Hydroids and Hydromedusae. Clarendon Press, Oxford: 107–116.Google Scholar
  2. Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.CrossRefGoogle Scholar
  3. Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.CrossRefGoogle Scholar
  4. Attrill, M. J. & R. M. Thomas, 1996. Long-term distribution patterns of mobile estuarine invertebrates (Ctenophora, Cnidaria, Crustacea: Decapoda) in relation to hydrological parameters. Marine Ecology Progress Series 143: 25–36.CrossRefGoogle Scholar
  5. Attrill, M. J., J. Wright & W. Edwards, 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52: 480–485.Google Scholar
  6. Banse, K., 1990. Mermaids – their biology, culture and demise. Limnology and Oceanography 35: 148–153.CrossRefGoogle Scholar
  7. Barnard, R., S. D. Batten, G. Beaugrand, C. Buckland, D. V. P. Conway, M. Edwards, J. Finlayson, L. W. Gregory, N. C. Halliday, A. W. G. John, D. G. Johns, A. D. Johnson, T. D. Jonas, J. A. Lindley, J. Nyman, P. Pritchard, P. C. Reid, A. J. Richardson, R. E. Saxby, J. Sidey, M. A. Smith, D. P. Stevens, C. M. Taylor, P. R. G. Tranter, A. W. Walne, M. Wootton, C. O. M. Wotton & J. C. Wright, 2004. Continuous plankton records: plankton atlas of the North Atlantic Ocean (1958–1999). II. Biogeographical charts. Marine Ecology Progress Series, Supplement: 11–75.Google Scholar
  8. Barnes, R. D., 1980. Invertebrate Zoology. Saunders College, Philadelphia.Google Scholar
  9. Beaugrand, G., 2004. The North Sea regime shift: evidence, causes, mechanisms and consequences. Progress in Oceanography 60: 245–262.CrossRefGoogle Scholar
  10. Beaugrand, G., F. Ibañez & J. A. Lindley, 2001. Geographical distribution and seasonal and diel changes in the diversity of calanoid copepods in the North Atlantic and North Sea. Marine Ecology Progress Series 219: 189–203.CrossRefGoogle Scholar
  11. Beaugrand, G., F. Ibañez & J. A. Lindley, 2003. An overview of statistical method applied to the CPR data. Progress in Oceanography 58: 235–262.CrossRefGoogle Scholar
  12. Beaugrand, G., P. C. Reid, F. Ibañez, J. A. Lindley & M. Edwards, 2002. Reorganisation of North Atlantic marine copepod biodiversity and climate. Science 296: 1692–1694.PubMedCrossRefGoogle Scholar
  13. Boero, F., C. Bucci, A. M. R. Colucci, C. Gravili & L. Stabili, 2007. Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Marine Ecology 28: 178–183.Google Scholar
  14. Boersma, M., A. M. Malzahn, W. Greve & J. Javidpour, 2007. The first occurrence of the ctenophore Mnemiopsis leidyi in the North Sea. Helgololand Marine Research 61: 153–155.CrossRefGoogle Scholar
  15. Brierley, A. S., B. E. Axelsen, E. Buecher, C. Sparks, H. Boyer & M. J. Gibbons, 2001. Acoustic observations of jellyfish in the Namibian Benguela. Marine Ecology Progress Series 210: 55–66.CrossRefGoogle Scholar
  16. Brinckmann-Voss, A., 1996. Seasonality of hydroids (Hydrozoa, Cnidaria) from an intertidal pool and adjacent subtidal habitats at Race Rocks, off Vancouver Island, Canada. Scientia Marina 66: 89–97.Google Scholar
  17. Brodeur, R. D., C. E. Mills, J. E. Overland, G. E. Walters & J. D. Schumacher, 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fisheries Oceanography 8: 296–306.CrossRefGoogle Scholar
  18. Brodeur, R. D., H. Sugisaki & G. L. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.CrossRefGoogle Scholar
  19. Buecher, E. & M. J. Gibbons, 2000. Interannual variation in the composition of the assemblages of medusae and ctenophores in St Helena Bay, Southern Benguela Ecosystem. Scientia Marina 64: 123–134.CrossRefGoogle Scholar
  20. Bullard, L. & A. Myers, 2000. Observations on the seasonal occurrence and abundance of gelatinous zooplankton in Lough Hyne, Co. Cork, south-west Ireland. Biology and Environment – Proceedings of the Royal Irish Academy 100B: 75–83.Google Scholar
  21. Byrne, P., 1995. Seasonal composition of meroplankton in the Dunkellin estuary, Galway Bay. Biology and Environment – Proceedings of the Royal Irish Academy 95B: 35–48.Google Scholar
  22. Carré, D. & C. Carré, 1990. Complex reproductive cycle in Eucheilota paradoxica (Hydrozoa: Leptomedusae): medusae, polyps and frustules produced from medusa stage. Marine Biology 104: 303–310.CrossRefGoogle Scholar
  23. Colebrook, J. M., 1975. The continuous plankton recorder survey: automatic data processing methods. Bulletin of Marine Ecology 8: 123–142.Google Scholar
  24. Colebrook, J. M., 1979. Continuous plankton records: seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea. Marine Biology 51: 23–32.CrossRefGoogle Scholar
  25. Colebrook, J. M. & G. A. Robinson, 1961. The seasonal cycle of the plankton in the North Sea and the North-Eastern Atlantic. Journal du Conseil Interntional pour l’Exloration de lar Mer 26: 156–165.Google Scholar
  26. Colebrook, J. M. & G. A. Robinson, 1965. Continuous plankton records: seasonal cycles of phytoplankton and copepods in the north-eastern Atlantic and the North Sea. Bulletin of Marine Ecology 6: 123–139.Google Scholar
  27. Drinkwater, K. F., A. Belgrano, A. Borja, A. Conversi, M. Edwards, C. H. Greene, G. Ottersen, A. Pershing & H. Walker, 2003. The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen, & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophysical Monograph 134. AGU, Washington, DC: 211–234.Google Scholar
  28. Edwards, M., G. Beaugrand, P. C. Reid, A. A. Rowden & M. B. Jones, 2002. Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series 239: 1–10.CrossRefGoogle Scholar
  29. Edwards, M., D. G. Johns, S. C. Leterme, E. Svendsen & A. J. Richardson, 2006. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnology and Oceanography 51: 820–829.Google Scholar
  30. Edwards, M. & A. J. Richardson, 2004. The impact of climate change on the phenology of the plankton community and trophic mismatch. Nature 430: 881–884.PubMedCrossRefGoogle Scholar
  31. Elmhirts, R., 1925. Lunar periodicity in Obelia. Nature 116: 358–359.Google Scholar
  32. Evans, F., 1972. The permanent zooplankton of Northumberland coastal waters. Proceedings of the University of Newcastle upon Tyne Philosophical Society 2: 25–68.Google Scholar
  33. Feigenbaum, D. L. & M. Kelly, 1984. Changes in the lower Chesapeake Bay food chain in the presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusae). Marine Ecology Progress Series 19: 39–47.CrossRefGoogle Scholar
  34. FishStat Plus fisheries statistics software on CD-ROM. Food and Agricultural Organization of the United Nations.Google Scholar
  35. Fraser, J. H., 1970. The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. Journal du Conseil International pour l’Exploration de la Mer 33: 149–168.Google Scholar
  36. Gibbons, M. J., E. Buecher & D. Thibault-Botha, 2003. Observations on the ecology of Pleurobrachia pileus (Ctenophora) in the southern Benguela ecosystem. African Journal of Marine Science 25: 253–261.Google Scholar
  37. Goy, J., 1973. Gonionemus suvaensis: structural characters, developmental stages and ecology. Publications of the Seto Marine Biology Laboratory 20: 525–536.Google Scholar
  38. Goy, J., P. Morand & M. Etienne, 1989. Long term fluctuation of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep-Sea Research 36: 269–279.CrossRefGoogle Scholar
  39. Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.CrossRefGoogle Scholar
  40. Greve, W., 1971. Ökologische Untersuchungen an Pleurobrachia pileus. 1. Freilanduntersuchungen. Helgoländer wiss. Meeresunters 22: 303–325.CrossRefGoogle Scholar
  41. Greve, W., 1994. The 1989 German Bight invasion of Muggiaea atlantica. ICES Journal of Marine Science 51: 355–358.CrossRefGoogle Scholar
  42. Greve, W., F. Reiners & J. Nast, 1996. Biocoenotic changes of the zooplankton in the German Bight: the possible effects of eutrophication and climate. ICES Journal of Marine Science 53: 951–956.CrossRefGoogle Scholar
  43. Houghton, J. D. R., T. K. Doyle, M. W. Wilson, J. Davenport & G. C. Hays, 2006. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87: 1967–1972.PubMedCrossRefGoogle Scholar
  44. Hunt, H. G., 1968. Continuous plankton records: contribution towards a plankton atlas of the North Atlantic and the North Sea Part XI: the seasonal and annual distributions of Thaliacea. Bulletin of Marine Ecology 6: 225–249. Plates LXVIII–LXXXV.Google Scholar
  45. Hunt, B. P. V. & G. W. Hosie, 2006. Continuous plankton recorder flow rates revisited: clogging, ship speed and flow meter design. Journal of Plankton Research 28: 847–855.CrossRefGoogle Scholar
  46. Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679.PubMedCrossRefGoogle Scholar
  47. Iversen, S. A., M. D. Skogen & E. Svendsen, 2002. Availability of horse mackerel (Trachurus trachurus) in the northeastern North Sea, predicted by the transport of Atlantic water. Fisheries Oceanography 11: 245–250.CrossRefGoogle Scholar
  48. Kirby, R. R., G. Beaugrand, J. A. Lindley, A. J. Richardson, M. Edwards & P. C. Reid, 2007. Climate effects and benthic-pelagic coupling in the North Sea. Marine Ecology Progress Series 330: 31–38.CrossRefGoogle Scholar
  49. Kirby, R. R. & J. A. Lindley, 2005. Molecular analysis of continuous plankton recorder samples, and examination of echinoderm larvae in the North Sea. Journal of the Marine Biological Association of the United Kingdom 85: 451–459.CrossRefGoogle Scholar
  50. Kramp, P. L., 1959. The hydromedusae of the Atlantic Ocean and adjacent waters. Dana Report 46: 1–283.Google Scholar
  51. Link, J. S. & M. D. Ford, 2006. Widespread and persistent increase of Ctenophora in the continental shelf ecosystem off NE USA. Marine Ecology Progress Series 320: 153–159.CrossRefGoogle Scholar
  52. Longhurst, A. R., 1998. Ecological Geography of the Sea. Academic Press, San Diego.Google Scholar
  53. Lynam, C. P., M. J. Gibbons, B. A. Axelsen, C. A. J. Sparks, J. Coetzee, B. G. Heywood & A. S. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16: 492–493.CrossRefGoogle Scholar
  54. Lynam, C. P., S. J. Hay & A. S. Brierley, 2004. Interannual variability in abundance of North Sea jellyfish and links to North Atlantic oscillation. Limnology and Oceanography 49: 637–643.CrossRefGoogle Scholar
  55. Lynam, C. P., S. J. Hay & A. S. Brierley, 2005a. Jellyfish abundance and climatic variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. Journal of the Marine Biological Association of the United Kingdom 85: 435–450.CrossRefGoogle Scholar
  56. Lynam, C. P., M. R. Heath, S. J. Hay & A. S. Brierley, 2005b. Evidence for impacts by jellyfish on North Sea herring recruitment. Marine Ecology Progress Series 298: 157–167.CrossRefGoogle Scholar
  57. Mackie, G. O., P. R. Pugh & J. E. Purcell, 1987. Siphonophore biology. Advances in Marine Biology 24: 97–262.CrossRefGoogle Scholar
  58. Mann, K. H. & J. R. N. Lazier, 1991. Dynamics of Marine Ecosystems. Blackwell Scientific Publications, Oxford.Google Scholar
  59. Matsueda, N., 1969. Presentation of Aurelia aurita at thermal power station. Bulletin of the Marine Biology Station at Asamushi 13: 187–191.Google Scholar
  60. Mianzan, H., 1999. Ctenophora. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. Backhuys Publishers, Leiden: 561–573.Google Scholar
  61. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions. Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  62. Möller, H., 1984. Reduction of a larval herring population by jellyfish predator. Science 224: 621–622.PubMedCrossRefGoogle Scholar
  63. Montgomery, M. K. & M. M. Kremer, 1995. Transmission of symbiotic dinoflagellates through the sexual cycle of the host scyphozon Linuche unguiculata. Marine Biology 124: 147–155.CrossRefGoogle Scholar
  64. Myers, R. A. & B. Worm, 2003. Rapid worldwide depletion of predatory fish communities. Nature 423: 280–283.PubMedCrossRefGoogle Scholar
  65. Nicholas, K. R. & C. L. J. Frid, 1999. Occurrence of hydromedusae in the plankton off Northumberland (western central North Sea) and the role of planktonic predators. Journal of the Marine Biological Association of the United Kingdom 79: 979–992.CrossRefGoogle Scholar
  66. North Sea Task Force, 1993. North Sea Quality Status Report 1993. Oslon and Paris Commissions, London/Olsen and Olsen, Fredensborg.Google Scholar
  67. Parsons, T. R. & C. M. Lalli, 2002. Jellyfish population explosions: revisiting a hypothesis of possible causes. La mer 40: 111–121.Google Scholar
  68. Pauly, D., V. Christensen, S. Guenette, T. J. Pitcher, U. R. Sumaila, C. J. Walters, R. Watson & D. Zeller, 2002. Towards sustainability in world fisheries. Nature 418: 689–695.PubMedCrossRefGoogle Scholar
  69. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.CrossRefGoogle Scholar
  70. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451: 145–176.CrossRefGoogle Scholar
  71. Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  72. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.CrossRefGoogle Scholar
  73. Raitsos, D. E., P. C. Reid, S. J. Lavender, M. Edwards & A. J. Richardson, 2005. Extending the SeaWiFS chlorophyll dataset back 50 years in the northeast Atlantic. Geophysical Research Letters 32: L06603.CrossRefGoogle Scholar
  74. Raymont, J. E. G., 1983. Plankton and productivity in the oceans, Zooplankton. Pergamon Press, Oxford.Google Scholar
  75. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent & A. Kaplan, 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research 108(D14): 4407.CrossRefGoogle Scholar
  76. Reid, P. C., N. P. Holliday & T. J. Smyth, 2001. Pulses in the eastern margin current and warmer water off the north west European shelf linked to North Sea ecosystem changes. Marine Ecology Progress Series 215: 283–287.CrossRefGoogle Scholar
  77. Richardson, A. J., A. W. Walne, A. W. G. John, T. D. Jonas, J. A. Lindley, D. W. Sims, D. Stevens & M. Witt, 2006. Using continuous plankton recorder data. Progress in Oceanography 68: 27–74.CrossRefGoogle Scholar
  78. Robinson, G. A., 1970. Continuous plankton records: variation in the seasonal cycle of phytoplankton in the North Atlantic. Bulletins of Marine Ecology 6: 333–345.Google Scholar
  79. Roosen-Runge, E. C., 1970. Life cycle of the hydromedusa Phialidium gregarium (A Agassiz, 1862) in the laboratory. Biological Bulletin of the Marine Biology Laboratory, Woods Hole 166: 206–215.Google Scholar
  80. Russell, F. S., 1933. The seasonal distribution of meroplankton as shown by catches in the 2-m Stramin ring-trawl in offshore waters off Plymouth. Journal of the Marine Biological Association of the United Kingdom 19: 73–82.Google Scholar
  81. Russell, F. S., 1938. The Plymouth offshore medusa fauna. Journal of the Marine Biological Association of the United Kingdom 22: 411–439.Google Scholar
  82. Russell, F. S., 1939. Hydrographical and biological conditions in the North Sea as indicated by planktonic organisms. Journal du Conseil 14: 171–192.Google Scholar
  83. Russell, F. S., 1953. The Medusae of the British Isles. Cambridge University Press, Cambridge.Google Scholar
  84. Schneider, G., 1987. Role of advection in the distribution and abundance of Pleurobrachia pileus in Kiel Bight. Marine Ecology Progress Series 41: 99–102.CrossRefGoogle Scholar
  85. Shiganova, T. A., Z. A. Mirzoyan, E. A. Studenikina, S. P. Volovik, I. Siokoi-Frangou, S. Zervoudaki, E. D. Christou, A. Y. Skirta & H. J. Dumont, 2001. Population development of the invader ctenophore Mnemiopsis leidyi in the Black Sea and other seas of the Mediterranean basin. Marine Biology 139: 431–445.CrossRefGoogle Scholar
  86. Sims, D. W., E. J. Southall, G. A. Tarling & J. D. Metcalfe, 2005. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. Journal of Animal Ecology 74: 755–761.CrossRefGoogle Scholar
  87. Sims, D. W., M. J. Witt, A. J. Richardson, E. J. Southall & J. D. Metcalfe, 2006. Encounter success of free-ranging marine predator movements across a dynamic prey landscape. Proceedings of the Royal Society B 273: 1195–1201.PubMedCrossRefGoogle Scholar
  88. Stibor, H. & N. Tokle, 2003. Feeding and asexual reproduction of the jellyfish Sarsia gemmifera in response to resource enrichment. Oecologia 135: 202–208.PubMedGoogle Scholar
  89. Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. Journal of Plankton Research 9: 901–915.CrossRefGoogle Scholar
  90. Travis, J., 1993. Invader threatens Black, Azov Seas. Science 262: 1366–1367.PubMedCrossRefGoogle Scholar
  91. Van der Veer, H. W. & C. F. M. Sadée, 1984. Seasonal occurrence of the ctenophore Pleurobrachia pileus in the western Dutch Wadden Sea. Marine Biology 79: 219–227.CrossRefGoogle Scholar
  92. Watson, H. G., 1930. The coelenterate plankton of the Northumbrian coast during the year 1925. Journal of the Marine Biological Association of the United Kingdom 17: 233–239.CrossRefGoogle Scholar
  93. Weijerman, M., H. Lindeboom & A. F. Zuur, 2005. Regime shifts in marine ecosystems of the North Sea and Wadden Sea. Marine Ecology Progress Series 298: 21–39.CrossRefGoogle Scholar
  94. Williams, R. & N. R. Collins, 1985. Chaetognaths and ctenophores in the holoplankton of the Bristol Channel. Marine Biology 85: 97–107.CrossRefGoogle Scholar
  95. Witt, M. J., A. C. Broderick, D. J. Johns, C. Martin, R. Penrose, M. S. Hoogmoed & B. J. Godley, 2007. Prey landscapes help identify potential foraging habitats for leatherback turtles in the northeast Atlantic. Marine Ecology Progress Series 337: 231–244.CrossRefGoogle Scholar
  96. Yip, S. Y., 1981. Investigations of the plankton of the west coast of Ireland – VII. A preliminary study of planktonic ctenophores along the west coast of Ireland, with special reference to Pleurobrachia pileus Müller, 1776, from Galway Bay. Proceedings of the Royal Irish Academy 81B: 89–109.Google Scholar
  97. Zar, J. H., 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Biodiversity and Conservation BiologyUniversity of the Western CapeBellvilleSouth Africa
  2. 2.Climate Adaptation FlagshipCSIRO Marine and Atmospheric ResearchClevelandAustralia
  3. 3.School of Physical SciencesUniversity of QueenslandQLDAustralia
  4. 4.Sir Alister Hardy Foundation for Ocean Science, The LaboratoryPlymouthUK

Personalised recommendations