, Volume 616, Issue 1, pp 133–149 | Cite as

Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production

  • Kylie A. Pitt
  • David T. Welsh
  • Robert H. Condon


Due to their boom and bust population dynamics and the enormous biomasses they can attain, jellyfish and ctenophores can have a large influence on the cycling of carbon (C), nitrogen (N) and phosphorus (P). This review initially summarises the biochemical composition of jellyfish, and compares and contrasts the mechanisms by which non-zooxanthellate and zooxanthellate jellyfish acquire and recycle C, N and P. The potential influence of elemental cycling by populations of jellyfish on phytoplankton and bacterioplankton production is then assessed. Non-zooxanthellate jellyfish acquire C, N and P predominantly through predation on zooplankton with smaller contributions from the uptake of dissolved organic matter. C, N and P are regenerated via excretion of inorganic (predominantly ammonium (NH4 +) and phosphate (PO4 3−)) and dissolved organic forms (e.g. dissolved free amino acids and dissolved primary amines). Inorganic nutrients excreted by jellyfish populations provide a small but significant proportion of the N and P required for primary production by phytoplankton. Excretion of dissolved organic matter may also support bacterioplankton production but few data are available. In contrast, zooxanthellate medusae derive most of their C from the translocation of photosynthetic products, exhibit no or minimal net release of N and P, and may actively compete with phytoplankton for dissolved inorganic nutrients. Decomposition of jellyfish blooms could result in a large release of inorganic and organic nutrients and the oxygen demand required to decompose their tissues could lead to localised hypoxic or anoxic conditions.


Cnidaria Ctenophora Nutrient recycling Bacterioplankton Phytoplankton 



We thank P. Kremer and an anonymous reviewer who provided valuable feedback on the manuscript. Funding was provided by grant HSF 04-10 from the Hermon Slade Foundation to K. Pitt & D. Welsh.


  1. Anninsky, B. E., 1988. The rate and efficiency of copepod assimilation by scyphoid medusa Aurelia aurita L. Ekologiya Morya 28: 58–64.Google Scholar
  2. Anninsky, B. E., G. A. Finenko, G. I. Abolmasova, E. S. Hubareva, L. S. Svetlichny, L. Bat & A. E. Kideys, 2005. Effect of starvation on the biochemical compositions and respiration rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. Journal of the Marine Biological Association United Kingdom 85: 549–561.Google Scholar
  3. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.Google Scholar
  4. Arai, M. N., J. A. Ford & J. N. C. Whyte, 1989. Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). Journal of Experimental Marine Biology and Ecology 127: 289–299.Google Scholar
  5. Bailey, T. G., J. J. Torres, M. J. Youngbluth & G. P. Owen, 1994a. Effect of decompression on mesopelagic gelatinous zooplankton: a comparison of in situ and shipboard measurements of metabolism. Marine Ecology Progress Series 113: 13–27.Google Scholar
  6. Bailey, T. G., M. J. Youngbluth & G. P. Owen, 1994b. Chemical composition and oxygen consumption rates of the ctenophore Bolinopsis infundibulum from the Gulf of Maine. Journal of Plankton Research 16: 673–689.Google Scholar
  7. Bailey, T. G., M. J. Youngbluth & G. P. Owen, 1995. Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Marine Ecology Progress Series 122: 121–134.Google Scholar
  8. Balderston, W. L. & G. Claus, 1969. A study of the symbiotic relationship between Symbiodinium microadriaticum Freudenthal, a zooxanthella, and the upside down jellyfish Cassiopea sp. Nova Hedwigia 17: 373–382.Google Scholar
  9. Båmstedt, U., 1988. Interspecific, seasonal and diel variations in zooplankton trypsin and amylase activities in Kosterfjorden, western Sweden. Marine Ecology Progress Series 44: 15–24.Google Scholar
  10. Båmstedt, U. & H. R. Skjoldal, 1980. RNA concentration of zooplankton: relationship with size and growth. Limnology and Oceanography 25: 304–316.Google Scholar
  11. Besiktepe, S. & H. G. Dam, 2002. Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Marine Ecology Progress Series 229: 151–164.Google Scholar
  12. Biggs, D., 1977. Respiration and ammonium excretion by open ocean gelatinous zooplankton. Limnology and Oceanography 22: 108–117.Google Scholar
  13. Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.Google Scholar
  14. Blanquet, R. S. & M. A. Phelan, 1987. An unusual blue mesogleal protein from the mangrove jellyfish Cassiopea xamachana. Marine Biology 94: 423–430.Google Scholar
  15. Brodeur, R., H. Sugisaki & G. J. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.Google Scholar
  16. Bronk, D. A., J. H. See, P. Bradley & L. Killberg, 2006. DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences Discussions 3: 1247–1277.CrossRefGoogle Scholar
  17. Carroll, S. & R. S. Blanquet, 1984. Alanine uptake by isolated zooxanthellae of the mangrove jellyfish, Cassiopea xamachana. I. Transport mechanisms and utilization. Biological Bulletin 166: 409–418.Google Scholar
  18. Cates, N., 1975. Productivity and organic consumption in Cassiopea and Condylactus. Journal of Experimental Marine Biology and Ecology 18: 55–59.Google Scholar
  19. Ceccaldi, H. J., A. Kanazawa & S.-I. Teshima, 1978. Chemical composition of some Mediterranean macroplanktonic organisms. 1. Proximate analysis. Tethys 8: 295–298.Google Scholar
  20. Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.Google Scholar
  21. Cohen, J. H. & R. B. Forward, 2003. Ctenophore kairomones and modified aminosugar disaccharides alter the shadow response in a larval crab. Journal of Plankton Research 25: 203–213.Google Scholar
  22. Conover, R. J., 1966. Assimilation of organic matter by zooplankton. Limnology and Oceanography 11: 338–345.Google Scholar
  23. Conover, R. J. & V. Francis, 1973. The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Marine Biology 18: 272–283.Google Scholar
  24. Costello, J., 1991. Complete carbon and nitrogen budgets for the hydromedusa Cladonema californicum (Anthomedusa: Cladonemidae). Marine Biology 108: 119–128.Google Scholar
  25. del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.Google Scholar
  26. del Giorgio, P. A. & R. H. Peters, 1993. Balance between phytoplankton production and plankton respiration in lakes. Canadian Journal of Fisheries and Aquatic Science 50: 282–289.Google Scholar
  27. Dicke, M. & M. W. Sabelis, 1988. Infochemical terminology: based on cost-benefit analysis rather than compound origins. Functional Ecology 2: 131–139.Google Scholar
  28. Ducklow, H. W. & R. Mitchell, 1979. Composition of mucus released by coral reef coelenterates. Limnology and Oceanography 24: 706–714.Google Scholar
  29. Fenchel, T., G. M. King & T. H. Blackburn, 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. Academic Press, San Diego: 307 pp.Google Scholar
  30. Ferguson, J. C., 1982. A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biological Bulletin 162: 1–17.Google Scholar
  31. Ferguson, J. C., 1988. Autoradiographic demonstration of the use of free amino acid by Sargasso Sea zooplankton. Journal of Plankton Research 10: 1225–1238.Google Scholar
  32. Finenko, G. A., B. E. Anninsky, Z. A. Romanova, G. I. Abolmasova & A. E. Kideys, 2001. Chemical composition, respiration and feeding rates of the new alien ctenophore, Beroe ovata, in the Black Sea. Hydrobiologia 451: 177–186.Google Scholar
  33. Gorsky, G., S. Dallot, J. Sardou, R. Fenaux, C. Carre & I. Palazzoli, 1988. C and N composition of some northwestern Mediterranean zooplankton and micronekton species. Journal of Experimental Marine Biology and Ecology 124: 133–144.Google Scholar
  34. Hansell, D. A. & C. A. Carlson, 2002. Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego.Google Scholar
  35. Hansson, L. J. & B. Norman, 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic bacteria. Marine Biology 121: 527–532.Google Scholar
  36. Hay, S., 2006. Marine ecology: gelatinous bells may bring change in marine ecosystems. Current Biology 16: R679–R682.PubMedGoogle Scholar
  37. He, X. & W.-X. Wang, 2006. Releases of ingested phytoplankton carbon by Daphnia magna. Freshwater Biology 51: 649–665.Google Scholar
  38. Heeger, T. & H. Möller, 1987. Ultrastructural observations on prey capture and digestion in the scyphomedusa Aurelia aurita. Marine Biology 96: 391–400.Google Scholar
  39. Hessinger, D. A. & H. M. Lenhoff, 1988. The Biology of Nematocysts. Academic Press, San Diego.Google Scholar
  40. Hoeger, U., 1983. Biochemical composition of ctenophores. Journal of Experimental Marine Biology and Ecology 72: 251–261.Google Scholar
  41. Hofmann, D. K. & P. Kremer, 1981. Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates. Marine Biology 65: 25–33.Google Scholar
  42. Ikeda, T., 1972. Chemical composition and nutrition of zooplankton in the Bering Sea. In Takenouti, A. Y. (ed.), Biological Oceanography of the Northern Pacific Ocean. Idemitsu Shoten, Tokyo: 433–442.Google Scholar
  43. Ikeda, T., 1974. Nutritional ecology of marine zooplankton. Memoirs of the Faculty of Fisheries Hokkaido University 22: 1–97.Google Scholar
  44. Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Marine Biology 85: 1–11.Google Scholar
  45. Jawed, M., 1973. Ammonia excretion by zooplankton and its significance to primary productivity during summer. Marine Biology 23: 115–120.Google Scholar
  46. Kasuya, T., T. Ishimaru & M. Murano, 2000. Metabolic characteristics o the lobate ctenophore Bolinopsis mikado (Moser). Plankton Biology and Ecology 47: 114–121.Google Scholar
  47. Katechakis, A., H. Stirbor, U. Sommer & T. Hansen, 2004. Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). Journal of Plankton Research 26: 589–603.Google Scholar
  48. Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith & J. C. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.Google Scholar
  49. Kingsford, M. J., K. A. Pitt & B. M. Gillanders, 2000. Management of jellyfish fisheries with special reference to the order Rhizostomeae. Oceanography and Marine Biology: An Annual Review 38: 85–156.Google Scholar
  50. Kinoshita, J., J. Hiromi & Y. Nakamura, 2000. Feeding of the scyphomedusa Cyanea nozakii on mesozooplankton. Plankton Biology and Ecology 47: 43–47.Google Scholar
  51. Kirchman, D. L., 2000. Microbial Ecology of the Oceans. Wiley-Liss, New York.Google Scholar
  52. Kremer, P., 1975. Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): comparisons and consequences. In 10th European Symposium on Marine Biology, Ostend, Belgium: 351–362.Google Scholar
  53. Kremer, P., 1977. Respiration and excretion by the ctenophore Mnemiopsis leidyi. Marine Biology 44: 43–50.Google Scholar
  54. Kremer, P., 1982. Effect of food availability on the metabolism of the ctenophore Mnemiopsis mccradyi. Marine Biology 71: 149–156.Google Scholar
  55. Kremer, P., 2005. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. Journal of the Marine Biological Association of the United Kingdom 85: 613–625.Google Scholar
  56. Kremer, P., M. F. Canino & R. W. Gilmer, 1986. Metabolism of epipelagic tropical ctenophores. Marine Biology 90: 403–412.Google Scholar
  57. Kremer, P., J. Costello, J. Kremer & M. Canino, 1990. Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusa Linuche unguiculata. Limnology and Oceanography 35: 609–624.Google Scholar
  58. Kremer, P. & M. R. Reeve, 1989. Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. 2. Carbon budgets and growth model. Journal of Plankton Research 11: 553–574.Google Scholar
  59. Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.Google Scholar
  60. Lesser, M. P., C. H. Mazel, M. Y. Gorbunov & P. G. Falkowski, 2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305: 997–1000.PubMedGoogle Scholar
  61. Lewis, D. H. & D. C. Smith, 1971. The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proceedings of the Royal Society of London Series B 178: 111–129.Google Scholar
  62. Lucas, C. H., 1994. Biochemical composition of Aurelia aurita in relation to age and sexual maturity. Journal of Experimental Marine Biology and Ecology 183: 179–182.Google Scholar
  63. Lutcavage, M. & P. L. Lutz, 1986. Metabolic rate and food energy requirements of the leatherback sea turtle, Dermochelys coriacea. Copeia 1986: 796–798.Google Scholar
  64. Lynam, C. P., M. J. Gibbons, E. A. Bjørn, C. A. J. Sparks, B. G. Heywood & A. S. Brierley, 2006. Jellyfish take over fish in a heavily fished system. Current Biology 16: R492–R493.PubMedGoogle Scholar
  65. Malej, A., 1989. Respiration and excretion rates of Pelagia noctiluca (Semaeostomeae, Scyphozoa). In Proceedings of the 21st EMBS. Polish Academy of Sciences, Institute of Oceanology, Gdansk: 107–113.Google Scholar
  66. Malej, A., 1991. Rates of metabolism of jellyfish as related to body weight, chemical composition and temperature UNEP: jellyfish blooms in the Mediterranean. In Proceedings of the II Workshop on Jellyfish in the Mediterranean. UNEP, Athens: 253–259.Google Scholar
  67. Malej, A., J. Faganeli & J. Pezdic, 1993. Stable isotope and biochemical fractionation in the marine pelagic foodchain: the jellyfish Pelagia noctiluca and net zooplankton. Marine Biology 116: 565–570.Google Scholar
  68. Matsakis, S., 1992. Ammonia excretion rate of Clytia spp. hydromedusae (Cnidaria Thecata): effects of individual dry weight, temperature and food availability. Marine Ecology Progress Series 84: 55–63.Google Scholar
  69. McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Marine Biology 119: 13–22.Google Scholar
  70. Miller, C. & P. Glibert, 1998. Nitrogen excretion by the calanoid copepod Acartia tonsa: results of mesocosm experiments. Journal of Plankton Research 20: 1767–1780.Google Scholar
  71. Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science 52: 575–581.Google Scholar
  72. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.Google Scholar
  73. Minor, E. C., J.-P. Simjouw & M. R. Mulholland, 2006. Seasonal variation in dissolved organic carbon concentrations and characteristics in a shallow coastal bay. Marine Chemistry 101: 166–179.Google Scholar
  74. Miyake, H., D. J. Lindsay, M. Kitamura & S. Nishida, 2005. Occurrence of the scyphomedusa Parumbrosa polylobata Kishinouye, 1910 in Suruga Bay, Japan. Plankton Biology and Ecology 52: 58–66.Google Scholar
  75. Morand, P., C. Carré & D. C. Biggs, 1987. Feeding and metabolism of the jellyfish Pelagia noctiluca (scyphomedusae, semaeostomeae). Journal of Plankton Research 9: 651–665.Google Scholar
  76. Muscatine, L. & E. Cernichiari, 1969. Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biological Bulletin 137: 506–523.Google Scholar
  77. Muscatine, L. & R. E. Marian, 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnology and Oceanography 27: 910–917.Google Scholar
  78. Nemazie, D. A., J. E. Purcell & P. M. Glibert, 1993. Ammonium excretion by gelatinous zooplankton and their contribution to the ammonium requirements of microplankton in Chesapeake Bay. Marine Biology 116: 451–458.Google Scholar
  79. Odum, H. T. & E. P. Odum, 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monographs 25: 291–319.Google Scholar
  80. Pagés, F., H. E. González & S. R. González, 1996. Diet of the gelatinous zooplankton in Hardangerfjord (Norway) and potential predatory impact by Aglantha digitale (Trachymedusae). Marine Ecology Progress Series 139: 69–77.Google Scholar
  81. Pagés, F., H. E. Gonzalez, M. Ramon, M. Sobarzo & J.-M. Gili, 2001. Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae). Marine Ecology Progress Series 210: 13–24.Google Scholar
  82. Peach, M. B. & K. A. Pitt, 2005. Morphology of the nematocysts of the medusae of two scyphozoans Catostylus mosaicus and Phyllorhiza punctata (Rhizostomeae): implications for capture of prey. Invertebrate Biology 124: 98–108.Google Scholar
  83. Percy, J. A. & F. J. Fife, 1981. The biochemical composition and energy content of arctic marine macrozooplankton. Arctic 34: 307–313.Google Scholar
  84. Pitt, K. A. & M. J. Kingsford, 2003. Temporal variation in the virgin biomass of the edible jellyfish, Catostylus mosaicus (Scyphozoa, Rhizostomeae). Fisheries Research 63: 303–313.Google Scholar
  85. Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.Google Scholar
  86. Purcell, J. E., 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Marine Biology 73: 257–261.Google Scholar
  87. Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates and effects on prey populations. Annales de l’Institut océanographique, Paris 73: 125–137.Google Scholar
  88. Purcell, J. E., 2008. Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia (this volume). doi: 10.1007/s10750-008-9585-8.
  89. Purcell, J. E. & P. Kremer, 1983. Feeding and metabolism of the siphonophore Sphaeronectes gracilis. Journal of Plankton Research 5: 95–106.Google Scholar
  90. Raffealli, D. G., R. A. Raven & L. J. Poole, 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology: An Annual Review 36: 97–125.Google Scholar
  91. Rahav, B. O., Z. Dubinsky, Y. Achituv & P. G. Falkowski, 1989. Ammonium metabolism in the zooxanthellate coral, Stylophora pistillata. Proceedings of the Royal Society of London Series B 236: 325–337.CrossRefGoogle Scholar
  92. Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea, Vol. 2. Interscience, New York: 26–77.Google Scholar
  93. Reeve, M. R., M. A. Syms & P. Kremer, 1989. Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. I. Carbon biomass, feeding, egg production, growth and assimilation efficiency. Journal of Plankton Research 11: 535–552.Google Scholar
  94. Reeve, M. R., M. A. Walter & T. Ikeda, 1978. Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. Limnology and Oceanography 24: 740–751.Google Scholar
  95. Riemann, L., J. Titelman & U. Båmstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.Google Scholar
  96. Schneider, G., 1988. Chemische zusammensetzung und biomasseparameter der ohrenqualle Aurelia aurita. Helgolander Meeresuntersuchungen 42: 319–327.Google Scholar
  97. Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, Western Baltic. Marine Biology 100: 507–514.Google Scholar
  98. Schneider, G., 1990. A comparison of carbon based ammonia excretion rates between gelatinous and non-gelatinous zooplankton: implications and consequences. Marine Biology 106: 219–225.Google Scholar
  99. Shanks, A. L. & W. M. Graham, 1988. Chemical defense in a scyphomedusa. Marine Ecology Progress Series 45: 81–86.Google Scholar
  100. Shenker, J. M., 1985. Carbon content of the neritic scyphomedusa Chrysaora fuscescens. Journal of Plankton Research 7: 169–173.Google Scholar
  101. Shimauchi, H. & S. Uye, 2007. Excretion and respiration rates of the scyphomedusa Aurelia aurita from the Inland Sea of Japan. Journal of Oceanography 63: 27–34.Google Scholar
  102. Smith, K. L. J., 1982. Zooplankton of a bathyal benthic boundary layer: in situ rates of oxygen consumption and ammonium excretion. Limnology and Oceanography 27: 461–471.Google Scholar
  103. Søndergaard, M. & M. Middelboe, 1995. A cross-system analysis of labile dissolved organic carbon. Marine Ecology Progress Series 118: 283–294.Google Scholar
  104. Southwell, M. W., B. N. Popp & C. S. Martens, 2008. Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Marine Chemistry 108: 96–108.Google Scholar
  105. Swanson, R. & O. Hoegh-Guldberg, 1998. Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Marine Biology 131: 89–93.Google Scholar
  106. Thingstad, T. F., M. D. Krom, R. F. C. Mantoura, G. A. F. Flaten, S. Groom, B. Herut, N. Kress, C. S. Law, A. Pasternak, P. Pitta, S. Psarra, F. Rassoulzadegan, T. Tanaka, A. Tselepides, P. Wassmann, E. M. S. Woodward, C. W. Riser, G. Zodiatis & T. Zohary, 2005. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309: 1068–1071.PubMedGoogle Scholar
  107. Titelman, J., L. Riemann, T. A. Sørnes, T. Nilsen, P. Griekspoor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.Google Scholar
  108. Todd, B. D., D. J. Thornhill & W. K. Fitt, 2006. Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Marine Pollution Bulletin 52: 515–521.PubMedGoogle Scholar
  109. Uye, S. & H. Shimauchi, 2005. Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland sea of Japan. Journal of Plankton Research 27: 237–248.Google Scholar
  110. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.CrossRefGoogle Scholar
  111. Verde, E. A. & L. R. McCloskey, 1998. Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Marine Ecology Progress Series 168: 147–162.Google Scholar
  112. Viaroli, P., M. Bartoli, C. Bondavalli & M. Naldi, 1995. Oxygen fluxes and dystrophy in a coastal lagoon colonized by Ulva rigida (Sacca di Goro, Po River Delta, Northern Italy). Fresenius Environmental Bulletin 4: 381–386.Google Scholar
  113. Wang, J.-T. & A. E. Douglas, 1998. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis. Journal of Experimental Biology 201: 2445–2453.PubMedGoogle Scholar
  114. Webb, K. L. & R. E. Johannes, 1967. Studies of the release of dissolved free amino acids by marine zooplankton. Limnology and Oceanography 12: 376–382.Google Scholar
  115. Weis, V. M., G. J. Smith & L. Muscatine, 1989. A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Marine Biology 100: 195–202.Google Scholar
  116. Wells, M. L., 2002. Marine colloids and trace metals. In Hansell, D. A. & C. A. Carlson (eds), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego: 367–404.Google Scholar
  117. Welsh, D. T. & G. Castadelli, 2004. Bacterial nitrification activity directly associated with isolated benthic marine animals. Marine Biology 144: 1029–1037.Google Scholar
  118. Wilkerson, F. P. & P. Kremer, 1992. DIN, DON and PO4 flux by a medusa with algal symbionts. Marine Ecology Progress Series 90: 237–250.Google Scholar
  119. West, E. J., D. T. Welsh & K. A. Pitt, 2008. Influence of decomposing jellyfish on sediment oxygen demand and nutrient dynamics. Hydrobiologia (this volume). doi: 10.1007/s10750-008-9586-7.
  120. Youngbluth, M. J., P. Kremer, T. G. Bailey & C. A. Jacoby, 1988. Chemical composition, metabolic rates and feeding behavior of the midwater ctenophore Bathocyroe fosteri. Marine Biology 98: 87–94.Google Scholar
  121. Yousefian, M. & A. E. Kideys, 2003. Biochemical composition of Mnemiopsis leidyi in the southern Caspian Sea. Fish Physiology and Biochemistry 29: 127–131.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kylie A. Pitt
    • 1
  • David T. Welsh
    • 1
  • Robert H. Condon
    • 2
  1. 1.Australian Rivers Institute – Coast and EstuariesGriffith UniversityGold Coast CampusAustralia
  2. 2.Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointUSA

Personalised recommendations