Hydrobiologia

, Volume 616, Issue 1, pp 11–21 | Cite as

The growth of jellyfishes

JELLYFISH BLOOMS

Abstract

To date, a disparate array of concepts and methods have been used to study the growth of jellyfish, with the result that few generalities have emerged which could help, e.g., in predicting growth patterns in unstudied species. It is shown that this situation can be overcome by length-frequency analysis (LFA), applied to jellyfish bell diameter (i.e., “length”) frequency data. A selection of LFA methods (ELEFAN, Wetherall plots and length-converted catch curves, all implemented in the FiSAT software) is applied here to 34 sets of bell diameter frequency data of jellyfish. This led to the estimates of parameters of the von Bertalanffy growth function (VBGF), which, especially in its seasonal form, was found to fit the available size-frequency data reasonably well. We also obtained numerous estimates of mortality, useful for modeling the life history of jellyfish. Finally, by scaling their asymptotic weight (W , a parameter of the VBGF) to the weight they would have if they had the same water content as fish, we show that most jellyfish grow at the same rate as small fishes (guppies and anchovies). As in fish, the VBGF parameters K and W , when plotted in a double logarithmic (“auximetric”) plot, tend to cluster into ellipsoid shapes, which increase in area when shifting from species to genera, families, etc. If validated by subsequent studies, auximetric plots for jellyfish would provide a powerful tool for testing comparative hypotheses on jellyfish life history.

Keywords

Von Bertalanffy growth function Length-frequency analysis ELEFAN FiSAT Natural mortality Water content 

Notes

Acknowledgements

We would like to thank Ms. Christine Dar (SeaLifeBase Project, Philippines) for help with assembling the data in the correct format for VBGF analysis and for extracting and encoding in SeaLifeBase, over a short period of time, the life history and ecological information on jellyfishes. We would also like to thank Dr. Laura E. Martin (Coral Reef Research Foundation and University of California, Merced) for sending us unpublished jellyfish size-frequency data, which extended the coverage of the analysis presented here.

References

  1. Beverton, R. J. H. & S. J. Holt, 1956. A review of methods for estimating rates in exploited fish populations, with special reference to sources of bias in catch sampling. Rapports et Procès-verbaux des Réunions du Conseil International de l’Exploration de la Mer 140: 67–83.Google Scholar
  2. Brewer, R. H., 1989. The annual pattern of feeding, growth, and sexual reproduction in Cyanea (Cnidaria: Scyphozoa) in the Niantic River Estuary, Connecticut. Biological Bulletin 176: 272–281.CrossRefGoogle Scholar
  3. Brierley, A. S., B. E. Axelsen, E. Buecher, C. A. J. Sparks, H. Boyer & M. J. Gibbons, 2001. Acoustic observations of jellyfish in the Namibian Benguela. Marine Ecology and Progress Series 210: 55–66.CrossRefGoogle Scholar
  4. Brodeur, R. D., H. Sugisaki & G. L. J. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: Implications for the ecosystem. Marine Ecology and Progress Series 233: 89–103.CrossRefGoogle Scholar
  5. Buecher, E., C. Sparks, A. Brierley, H. Boyer & M. Gibbons, 2001. Biometry and size distribution of Chrysaora hysoscella (Cnidaria, Scyphozoa) and Aequorea aequorea (Cnidaria, Hydrozoa) off Namibia with some notes on their parasite Hyperia medusarum. Journal of Plankton Research 23: 1073–1080.CrossRefGoogle Scholar
  6. Bykov, V. P., 1983. Marine Fishes: Chemical Composition and Processing Properties. Amerind Publishing Co. Pvt. Ltd., New Delhi.Google Scholar
  7. Chen, E. L., 2002. Population Dynamics and Feeding of the Moon Jellyfish (Aurelia aurita) in Tapeng Bay, Southwestern Taiwan. National Sun Yat-Sen University, Taiwan.Google Scholar
  8. Coma, R., I. Llobet, M. Zabala, J. Gili & R. G. Hughes, 1992. The population dynamics of Halecium petrosum and Halecium pusillum (Hydrozoa, Cnidaria), epiphytes of Halimeda tuna in the northwestern Mediterranean. Scientia Marina 56: 161–169.Google Scholar
  9. Dawson, M. N. & L. E. Martin, 2001. Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259–273.CrossRefGoogle Scholar
  10. Deason, E. E., 1982. Mnemiopsis leidyi (Ctenophora) in Narragansett Bay, 1975–79: abundance, size composition and estimation of grazing. Estuarine Coastal and Shelf Science 15: 121–134.CrossRefGoogle Scholar
  11. Fosså, J. H., 1992. Mass occurrence of Periphylla periphylla (Schyphozoa, Coronatae) in a Norwegian fjord. Sarsia 77: 237–251.Google Scholar
  12. Fournier, D. A., J. Hampton & J. R. Sibert, 1998. MULTIFAN-CL: a length-based, age-structured, model for fisheries stock assessment, with application to south Pacific albacore (Thunnus alalunga). Canadian Journal of Fisheries and Aquatic Science 55: 2105–2116.CrossRefGoogle Scholar
  13. Froese, R. & C. Binohlan, 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology 56: 758–773.CrossRefGoogle Scholar
  14. García, J. R., 1990. Population dynamics and production of Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda, Puerto Rico. Marine Ecology Progress Series 64: 243–251.CrossRefGoogle Scholar
  15. Garcia, J. R. & E. Durbin, 1993. Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. Journal of Experimental Marine Biology and Ecology 173: 71–93.CrossRefGoogle Scholar
  16. Gayanilo, J. F., P. Sparre & D. Pauly, 1995. FAO/ICLARM Stock Assessment Tools (FiSAT) User’s Guide. Report No. 8. FAO, Rome.Google Scholar
  17. Gordon, M., C. Hatcher & J. Seymour, 2004. Growth and age determination of the tropical Australia cubozoan Chiropsalmus sp. Hydrobiologia 530/531: 339–345.CrossRefGoogle Scholar
  18. Haddad, M. A. & M. J. Noqueira, 2006. Reappearance and seasonality of Phyllorhiza punctata von Lendenfeld (Cnidaria, Scyphozoa, Rhizostomeae) medusae in southern Brazil. Revista Brasileira de Zoologia 23: 824–831.CrossRefGoogle Scholar
  19. Hamner, W. M. & R. M. Jenssen, 1974. Growth, degrowth and irreversible cell differentiation in Aurelia aurita. American Zoologist 14: 833–849.Google Scholar
  20. Ishii, H. & F. Tanaka, 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiologia 451: 311–320.CrossRefGoogle Scholar
  21. Ishii, H. & U. Båmstedt, 1998. Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). Journal of Plankton Research 20: 805–816.CrossRefGoogle Scholar
  22. Kikinger, R., 1992. Cotylorhiza tuberculata (Cnidaria: Scyphozoa) – life history of a stationary population. Marine Ecology (Berlin) 13: 333–362.CrossRefGoogle Scholar
  23. Kingsford, M. J., K. A. Pitt & B. M. Gillanders, 2000. Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanography and Marine Biology: An Annual Review 38: 85–156.Google Scholar
  24. Kinoshita, J., J. Hiromi & Y. Yamada, 2006. Abundante and biomass of scyphomedusae, Aurelia aurita and Chrysaora melanaster, and Ctenophora, Bolinopsis mikado, with estimates of their feeding impact on zooplankton in Tokyo Bay, Japan. Journal of Oceanography 62: 607–615.CrossRefGoogle Scholar
  25. Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the northeast pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.CrossRefGoogle Scholar
  26. Longhurst, A. & D. Pauly, 1987. Ecology of Tropical Oceans. Academic Press, San Diego.Google Scholar
  27. Lyman, C. P., M. J. Gibbons, B. E. Axelsen, C. A. J. Sparks, J. Coetzee, B. G. Heywood & A. S. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16: R492–R493.CrossRefGoogle Scholar
  28. Miyake, H., K. Iwao & Y. Kakinuma, 1997. Life history and environment of Aurelia aurita. South Pacific Studies 17: 273–285.Google Scholar
  29. Möller, H., 1980. Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Marine Biology 60: 123–128.CrossRefGoogle Scholar
  30. Mutlu, E., 2001. Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black Sea. Marine Biology 138: 329–339.CrossRefGoogle Scholar
  31. Olesen, N. J., K. Frandsen & H. U. Riisgard, 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series 105: 9–18.CrossRefGoogle Scholar
  32. Omori, M., H. Ishii & A. Fujinaga, 1995. Life history strategy of Aurelia aurita (Cnidaria, Scyphomedusae) and its impact on the zooplankton community of Tokyo Bay. ICES Journal of Marine Science 52: 597–603.CrossRefGoogle Scholar
  33. Pauly, D., 1987. A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrate. In Pauly, D. & G. R. Morgan (eds), Length-Based Models in Fisheries Research. ICLARM Conference Proceedings 13. ICLARM, Manila, Philippines: 7–34.Google Scholar
  34. Pauly, D., 1998a. Beyond our original horizons: the tropicalization of Beverton and Holt. Reviews in Fish Biology and Fisheries 8: 307–334.CrossRefGoogle Scholar
  35. Pauly, D., 1998b. Why squids, though not fish, may be better understood by pretending they are. South African Journal of Marine Science 20: 47–58.Google Scholar
  36. Pauly, D., S. Libralato, L. Morissette & M. L. D. Palomares, 2008. Jellyfish in ecosystems, online databases and ecosystem models. Proceedings of the Second International Jellyfish Blooms Symposium, Australia, June 2007. Hydrobiologia. doi: 10.1007/s10750-008-9583-x.
  37. Pauly, D. & G. R. Morgan (eds), 1987. Length-based Methods in Fisheries Research. ICLARM Conference Proceedings 13. ICLARM, Manila, Philippines.Google Scholar
  38. Pitt, K. A. & M. J. Kingsford, 2000. Reproductive biology of the edible jellyfish Catostylus mosaicus (Rhizostomeae). Marine Biology 137: 791–799.CrossRefGoogle Scholar
  39. Pitt, K. A. & M. J. Kingsford, 2003. Temporal and spatial variation in recruitment and growth of medusae of the jellyfish, Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine and Freshwater Research 54: 117–125.CrossRefGoogle Scholar
  40. Somers, I. F., 1988. On a seasonally oscillating growth function. Fishbyte 6: 8–11.Google Scholar
  41. van der Veer, H. W. & W. Oorthuysen, 1985. Abundance, growth and food demand of the scyphomedusa Aurelia aurita in the western Wadden Sea. Netherlands Journal of Sea Research 19: 38–44.CrossRefGoogle Scholar
  42. von Bertalanffy, L., 1957. Quantitative laws in metabolism and growth. Quarterly Review of Biology 32: 217–231.CrossRefGoogle Scholar
  43. Weisse, T. & M. Gomoiu, 2000. Biomass and size structure of the scyphomedusa Aurelia aurita in the northwestern Black Sea during spring and summer. Journal of Plankton Research 22: 223–239.CrossRefGoogle Scholar
  44. Wetherall, A., 1986. A new method for estimating growth and mortality parameters from length frequency data. Fishbyte (ICLARM/The WorldFish Center) 4(1): 12–14.Google Scholar
  45. Wetherall, A., J. J. Polovina & S. Ralston, 1987. Estimating growth and mortality in steady-state fish stocks from length-frequency data. In Pauly, D. & G. R. Morgan (eds), Length-based Models in Fisheries Research. ICLARM Conference Proceedings 13. ICLARM, Manila, Philippines: 53–74.Google Scholar
  46. Yasuda, T., 1971. Ecological studies on the jelly-fish, Aurelia aurita in Urazoko Bay, Fukui Prefecture – 4. Monthly change in the bell-length composition and breeding season. Bulletin of the Japanese Society of Scientific Fisheries 37: 364–370.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.The Sea Around Us Project, Fisheries CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations