, Volume 619, Issue 1, pp 27–37

Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China

Primary research paper


In order to investigate variations of absorption and total chlorophyll-a (TChl-a)-specific absorption coefficient of phytoplankton in Lake Taihu, 57 water samples obtained from Lake Taihu during November 8–22, 2007 were used in this study. Package effect and accessory pigments’ influences on the absorption spectra were also examined. Phytoplankton absorption was measured by quality filter technical, and TChl-a concentration was measured by “hot ethanol” method. Results yielded significant variations in phytoplankton absorption and TChl-a-specific absorption coefficient. Phytoplankton absorption coefficient at 675 nm is highly correlated to TChl-a concentration, while absorption at 440 nm is less correlated to TChl-a concentration because of great package effect and accessory pigments’ influence. There was an inverse relationship between aph*(λ) and TChl-a concentration. Four types of absorption spectra are identified by normalizing aph*(λ) to aph*(440). The aph*(λ) variation is mainly due to accessory pigments and package effect, whose influence at 675 nm ranges from 83.2% to 28%, with an average of 65.3%. Meanwhile, the wide varying ratio of aph*(440) to aph*(675) indicates a large variation range in the ratio of accessory pigment to TChl-a concentration. Those findings are significant to estimate Chl-a concentration based on bio-optical model, estimate primary production from remote sensing, and plan further ecological restoration measures for Lake Taihu.


Phytoplankton absorption Specific absorption Package effect Lake Taihu 


  1. Alalli, K., A. Bricaud & H. Claustre, 1997. Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific. Journal of Geophysical Research 102: 12413–12423.CrossRefGoogle Scholar
  2. Anderson, T. R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnology and Oceanography 38: 1403–1419.Google Scholar
  3. Babin, M., A. Morel, H. Claustre, A. Bricaud, Z. Kolber & P. G. Falkowski, 1996. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep Sea Research I 43: 1241–1272.CrossRefGoogle Scholar
  4. Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obloensky, G. & N. Hoepffner, 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 108(C7): 3211.Google Scholar
  5. Bidigare, R. R., Ondrusek M. E., Morrow, J. H., et al. 1990. In vivo absorption properties of algal pigments. SPIE, Ocean Optical 1032: 290–302.CrossRefGoogle Scholar
  6. Braocio-León, Ó. A., R. Millán-Núnez & E. Santamarfa-del-Ángel, 2006. Spatial variability of phytoplankton absorption coefficients and pigments off Baja California during November 2002. Journal of Oceanography 62: 873–885.CrossRefGoogle Scholar
  7. Bricaud, A., M. Babin, A. Morel & H. Claustre, 1995. Variability of chlorophyll specific absorption coefficient of natural phytoplankton analysis and parameterize. Journal of Geophysical Research 100(C7): 13321–13332.CrossRefGoogle Scholar
  8. Bricaud, A., H. Claustre, J. Ras & K. Oubelkheir, 2004. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal population. Journal of Geophysical Research 109: C11010.CrossRefGoogle Scholar
  9. Cao, W. X., Y. Z. Yang, S. Liu, X. Q. Xu, D. T. Yang & J. L. Zhang, 2005. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern China. Progress in Natural Science 15(4): 342–350.CrossRefGoogle Scholar
  10. Chen, Y. W., K. L. Chen & Y. H. Hu, 2006. Discussion on possible error for phytoplankton chlorophyll a concentration analysis using hot ethanol extraction method (in Chinese). Journal of Lake Science 18(5): 550–552.Google Scholar
  11. Ciotti, A. M., M. R. Lewis & J. J. Cullen, 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology and Oceanography 47(2): 404–417.Google Scholar
  12. Cleveland, J. S. & A. D. Weidemann, 1993. Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnology and Oceanography 38: 1321–1327.Google Scholar
  13. Cullen, J. J., A. M. Ciotti, R. F. Davis & M. R. Lewis, 1997. Optical detection and assessment of algal blooms. Limnology and Oceanography 42: 1223–1239.CrossRefGoogle Scholar
  14. Falkowski, P. G. & J. LaRoche, 1991. Acclimation to spectral irradiance in algae. Journal of Applied Phycology 27: 8–14.CrossRefGoogle Scholar
  15. Ficek, D., S. Kaczmarek, J. StoŃ-Egiert, B. Woźniak, R. Majchrowski & J. Dera, 2004. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46(4): 533–555.Google Scholar
  16. Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker & D. K. Clark, 1988. A semianalytical radiance model of ocean color. Journal of Geophysical Research 93: 10909–10924.CrossRefGoogle Scholar
  17. Harimoto, T., J. Ishizaka & R. Tsuda, 1999. Latitudinal and vertical distributions of phytoplankton absorption spectra in the Central North Pacific during Spring 1994. Journal of Oceanography 55: 667–679.CrossRefGoogle Scholar
  18. Hoepffner, N. & S. Sathyendranath, 1991. Effect of pigment composition on absorption properties of phytoplankton. Marine Ecology Progress Series 73: 11–23.CrossRefGoogle Scholar
  19. Hulst, H. C., 1981. Light scattering by small particles. Dover Publ., Inc., New York: 470.Google Scholar
  20. Kana, T. M., P. M. Glibert, R. Goericke & N. A. Welschmever, 1988. Zeaxanthin and β-carotene in Synechococcus WH7803 respond differently to irradiance. Limnology and Oceanography 33: 1623–1627.Google Scholar
  21. Kiefer, D. A. & B. G. Mitchell, 1983. A simple, steady-state description of phytoplankton growth based on absorption cross-section and quantum efficiency. Limnology and Oceanography 28: 770–776.Google Scholar
  22. Lazzara, L., A. Bricaud & H. Claustre, 1996. Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the tropical North Atlantic (EUMELI program). Deep Sea Research I 43: 1215–1240.CrossRefGoogle Scholar
  23. Lee, Z. P. & K. L. Carder, 2004. Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sensing of Environment 89: 361–368.CrossRefGoogle Scholar
  24. Lohrenz, S. E., A. D. Weidemann & M. Tuel, 2003. Phytoplankton spectral absorption as influenced by community size structure and pigment composition. Journal of Plankton Research 25(1): 35–61.CrossRefGoogle Scholar
  25. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12(2): 343–346.Google Scholar
  26. Marra, J., C. C. Trees & J. E. O’Reilly, 2007. Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep Sea Research 54: 155–163.CrossRefGoogle Scholar
  27. Mercado, J. M., Ramírez, T., & D. Cortés, 2007. Changes in nutrient concentration induced by hydrological variability and its effect on light absorption by phytoplankton in the Alborán Sea (Western Mediterranean Sea). Journal of Marine Systems. doi:10.1016/j.jmarsys.2007.05.009
  28. Millie, D. F., O. M. Schofied, G. J. Kirkpatrick, G. Johnsen, P. A. Tester & B. T. Vinyard, 1997. Detection of harmful algal blooms using photopigmnets and absorption signature: a case study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnology and Oceanography 42: 1240–1251.Google Scholar
  29. Mitchell, B. G., 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Society of Photo-Optical Instrumentation Engineers 1302: 137–148.Google Scholar
  30. Moberg, L., B. Karlberg, K. Sørensen & T. Källqvist, 2002. Assessment of phytoplankton class abundance using absorption spectra and chemometrics. Talanta 56: 153–160.PubMedCrossRefGoogle Scholar
  31. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). Journal of Geophysical Research 93: 10749–10768.CrossRefGoogle Scholar
  32. Morel, A., 1991. Light and marine photosynthesis: a spectral model with geochemical and climatological implications. Progress in Oceanography 26: 263–306.CrossRefGoogle Scholar
  33. Morel, A. & A. Bricaud, 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Research 28: 1375–1393.CrossRefGoogle Scholar
  34. Millán-Nùñez, E., M. E. Sieracki, R. Millán-Nùñez, J. R. Lara-Lara, G. Gaxiola-Castro & C. C. Trees, 2004. Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep Sea Research 51: 817–826.Google Scholar
  35. Moore, L. R., R. Goericke & S. W. Chisholm, 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Marine Ecology Progress Series 116: 259–275.CrossRefGoogle Scholar
  36. Stoń, J. & A. Kosakowska, 2000. Qualitative and quantitative analysis of Baltic phytoplankton pigments. Oceanologia 42(4): 449–471.Google Scholar
  37. Stuart, V., S. Sathyendranath, T. Platt, H. Maass & B. D. Irwin, 1998. Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra. Journal of Plankton Research 20: 187–217.CrossRefGoogle Scholar
  38. Suzuki, K., M. Kishino, K. Sasaoka, S. Saitoh & T. Saino, 1998. Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, northwestern north Pacific. Journal of Oceanography 54: 517–526.CrossRefGoogle Scholar
  39. Woźniak, B., J. Dera, D. Ficek, R. Majchrowski, S. Kaczmarek, M. Ostrowska & O. I. Koblentz-MisHke, 1999. Modelling the influence of acclimation on the absorption properties of marine phytoplankton. Oceanologia 41(2): 187–210.Google Scholar
  40. Yentsch, C. S. & D. A. Phinney, 1989. A bridge between ocean optics and microbial ecology. Limnology and Oceanography 34: 1694–1705.CrossRefGoogle Scholar
  41. Zhang, Y. L., B. Zhang, X. Wang, J. S. Li, S. Feng, Q. H. Zhao, M. L. Liu & B. Q. Qin, 2007. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia 592: 105–120.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Key Laboratory of Virtual Geographic Environment, Ministry of Education, College of Geographic SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations