, Volume 615, Issue 1, pp 69–79 | Cite as

Subtle population structure and male-biased dispersal in two Copadichromis species (Teleostei, Cichlidae) from Lake Malawi, East Africa

  • Dieter AnseeuwEmail author
  • Gregory E. Maes
  • Paul Busselen
  • Dries Knapen
  • Jos Snoeks
  • Erik Verheyen


Various attributes of cichlid biology have been suggested to drive their propensity for rapid speciation, including population substructuring over short geographic distances. While this seems especially true for the rock-dwelling Mbuna species from Lake Malawi, the present study shows that geographic or habitat barriers are not sufficient to explain population substructuring in the less substrate-bound Utaka (non-Mbuna) species. We found similar levels of subtle population structure in the rock-dwelling Copadichromis quadrimaculatus and in the sand-dwelling C. sp. ‘virginalis kajose’ (F ST < 0.01 in both species) without a discernable geographical pattern. We suggest that aspects of the reproductive strategy, by which seasonal aggregation alternates with more free-ranging stages, may facilitate the establishment of small population differences in Utaka. This hypothesis agrees with our finding that in these cichlids dispersal appears to be male biased.


Cichlids Copadichromis Population structure Sex-biased dispersal Habitat preference Mating strategy 



The field work was supported by the Interdisciplinary Research Centre of the KULeuven Campus Kortrijk, a grant from the King Leopold III Fund for Nature Exploration and Conservation to DA and grants from the Fund for Scientific Research (FWO) and the ‘Stichting tot bevordering van het wetenschappelijk onderzoek in Afrika’ to JS. G.E. Maes is a post-doctoral fellow of the Fund for Scientific Research (FWO). We wish to thank the Malawi Fisheries Department, and especially Sam Mapila and Orton Kachinjika, for permission to conduct fieldwork in Malawi, the Department for International Development (DFID) of the British High Commission in Malawi, and especially George Turner (Bangor University, UK), for putting a 4 × 4 vehicle at our disposal for the sampling trip. We thank the late Davis Mandere for his valuable assistance in the field, the Fisheries Research Unit in Monkey Bay and Nkhata Bay for their assistance and the late Stuart Grant for his hospitality and for providing fish samples.


  1. Aljanabi, S. M. & I. Martinez, 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.PubMedCrossRefGoogle Scholar
  2. Arnegard, M. E., J. A. Markert, P. D. Danley, J. R. Stauffer Jr., A. J. Ambali & T. D. Kocher, 1999. Population structure and colour variation of the cichlid fish Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in Southern Lake Malawi. Proceedings of the Royal Society B: Biological Sciences 266: 119–130.CrossRefGoogle Scholar
  3. Avise, J. C., A. G. Jones, D. Walker, J. A. Dewoody, et al., 2002. Genetic mating systems and reproductive natural histories of fishes: Lessons for ecology and evolution. Annual Review of Genetics 36: 19–45.PubMedCrossRefGoogle Scholar
  4. Belkhir, K., 2000. GENETIX, Version 4.05. Laboratoire Genome, Populations, Interactions. CNRS UPR 9060, Montpellier, France.Google Scholar
  5. Chapuis, M. P. & A. Estoup, 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24(3): 621–631.PubMedCrossRefGoogle Scholar
  6. Chisambo, J., 2000. A taxonomic revision of the deep-bodied spotted Copadichromis spp. (Teleostei, Cichlidae) from Lake Malawi/Nyasa Africa. Masters’ Thesis, University of Waterloo, Ontario, Canada.Google Scholar
  7. Dempster, A. P., N. M. Laird & D. B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 34: 1–38.Google Scholar
  8. Duponchelle, F., A. J. Ribbink, A. Msukwa, J. Mafuka & D. Mandere, 2000. Depth distribution and breeding patterns of the demersal species most commonly caught by trawling in the South West Arm of Lake Malawi. In Duponchelle, F. & A. J. Ribbink (eds), Fish Ecology Report. Lake Malawi/Nyasa/Niassa Biodiversity Conservation Project. Southern African Development Community, Gaborone. Botswana/Global Environmental Facility, Washington, DC: 15–168.Google Scholar
  9. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611–2620.PubMedCrossRefGoogle Scholar
  10. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin version 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.Google Scholar
  11. Falush, D., M. Stephens & J. K. Pritchard, 2007. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes 7: 574–578.PubMedCrossRefGoogle Scholar
  12. Garcia De Léon, F. J., L. Chikhi & L. Bonhomme, 1997. Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758). Molecular Ecology 6: 51–62.CrossRefGoogle Scholar
  13. Goudet, J. 2001. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3). Available from
  14. Goudet, J., N. Perrin & P. Waser, 2002. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Molecular Ecology 11: 1103–1114.PubMedCrossRefGoogle Scholar
  15. Hedrick, P. W., 1999. Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution 53: 313–318.CrossRefGoogle Scholar
  16. Iles, T. D., 1960. A group of zooplankton feeders of the genus Haplochromis (Cichlidae) in Lake Nyasa. Annals and Magazine of Natural History 13: 257–280.Google Scholar
  17. Kellogg, K., J. A. Markert, J. R. Stauffer Jr. & T. D. Kocher, 1995. Microsatellite variation demonstrates multiple paternity in lekking cichlid fishes from Lake Malawi, Africa. Proceedings of the Royal Society B: Biological Sciences 260: 79–84.CrossRefGoogle Scholar
  18. Kidd, M. R., C. E. Kidd & T. D. Kocher, 2006. Axes of differentiation in the bower-building cichlids of Lake Malawi. Molecular Ecology 15: 459–478.PubMedCrossRefGoogle Scholar
  19. Knight, M. E. & G. F. Turner, 2004. Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi. Proceedings of the Royal Society B: Biological Sciences 271: 675–680.PubMedCrossRefGoogle Scholar
  20. Knight, M. E., M. J. H. van Oppen, C. Rico, G. M. Hewitt & G. F. Turner, 1999. Evidence for male-biased dispersal in Lake Malawi cichlids from microsatellites. Molecular Ecology 8: 1521–1527.PubMedCrossRefGoogle Scholar
  21. Konings, A., 2001. Malawi Cichlids in their Natural Habitat, 3rd ed. Cichlid Press, El Paso: 352.Google Scholar
  22. McKaye, K. R., 1983. Ecology and breeding behavior of a cichlid fish, Cyrtocara eucinostomus, on a large lek in Lake Malawi, Africa. Environmental Biology of Fishes 8: 81–96.CrossRefGoogle Scholar
  23. McKaye, K. R., 1984. Behavioural aspects of cichlid reproductive strategies: Patterns of territoriality and brood defence in Central American substratum spawners and African mouth brooders. In Potts, G. W. & R. J. Wootton (eds), Fish Reproduction: Strategies and Tactics. Academic Press, London: 245–273.Google Scholar
  24. Meyer, A., T. D. Kocher, P. Basasibwaki & A. C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550–553.PubMedCrossRefGoogle Scholar
  25. O’Corry-Crowe, G. M., R. S. Suydam, A. Rosenberg, K. J. Frost & A. E. Dizon, 1997. Phylogeography, population structure and dispersal patterns of the beluga whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial DNA. Molecular Ecology 6: 955–970.CrossRefGoogle Scholar
  26. Pearse, D. E. & K. A. Crandall, 2004. Beyond F ST: Analysis of population genetic data for conservation. Conservation Genetics 5: 585–602.CrossRefGoogle Scholar
  27. Pereyra, R., 2003. Population structure, genetic diversity and dispersal of cichlid fishes from Lake Malawi. PhD Thesis, University of East Anglia, Norwich, UK.Google Scholar
  28. Pereyra, R., M. I. Taylor, G. F. Turner & C. Rico, 2004. Variation in habitat preference and population structure among three species of the Lake Malawi cichlid genus Protomelas. Molecular Ecology 13: 2691–2697.PubMedCrossRefGoogle Scholar
  29. Perrin, N. & V. Mazalov, 2000. Local competition, inbreeding and the evolution of sex-biased dispersal. American Naturalist 155: 116–127.PubMedCrossRefGoogle Scholar
  30. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  31. Raymond, M. & F. Rousset, 1995. GENEPOP version 1.2: Populations genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.Google Scholar
  32. Rico, C. & G. F. Turner, 2002. Extreme microallopatric divergence in a cichlid species from Lake Malawi. Molecular Ecology 11: 1585–1590.PubMedCrossRefGoogle Scholar
  33. Rüber, L., A. Meyer, C. Sturmbauer & E. Verheyen, 2001. Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: Evidence for introgression. Molecular Ecology 10: 1207–1225.PubMedCrossRefGoogle Scholar
  34. Queller, D. C. & K. F. Goodnight, 1989. Estimating relatedness using molecular markers. Evolution 43: 258–275.CrossRefGoogle Scholar
  35. Salzburger, W. & A. Meyer, 2004. The species flocks of East African cichlid fishes: Recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91: 277–290.PubMedCrossRefGoogle Scholar
  36. Shaw, P. W., G. F. Turner, M. R. Idid, R. L. Robinson & G. R. Carvalho, 2000. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proceedings of the Royal Society B: Biological Sciences 267: 2273–2280.PubMedCrossRefGoogle Scholar
  37. Snoeks, J., 2004. The Cichlid Diversity of Lake Malawi/Nyasa/Niassa: Identification, Distribution and Taxonomy. Cichlid Press, El Paso, Texas: 360.Google Scholar
  38. Taylor, M. I. & E. Verheyen, 2001. Microsatellite data reveals weak population substructuring in Copadichromis sp. ‘virginalis kajose’, a demersal cichlid from Lake Malawi, Africa. Journal of Fish Biology 59: 593–604.Google Scholar
  39. Thompson, A. B., E. H. Allison & B. P. Ngatunga, 1995. Spatial and temporal distribution of fish in the pelagic waters. In Menz, A. (ed.), The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, UK: 201–232.Google Scholar
  40. Turner, G. F., 1996. Offshore Cichlids of Lake Malawi. Cichlid Press, Lauenau, Germany: 240.Google Scholar
  41. van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  42. van Oppen, M. J. H., C. Rico, J. C. Deutsch, G. F. Turner & G. M. Hewitt, 1997. Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra. Molecular Ecology 6: 387–388.PubMedCrossRefGoogle Scholar
  43. van Oppen, M. J. H., G. F. Turner, C. Rico, R. L. Robinson, J. C. Deutsch, M. J. Genner & G. M. Hewitt, 1998. Assortative mating among rock-dwelling cichlid fishes supports high estimates of species richness from Lake Malawi. Molecular Ecology 7: 991–1001.CrossRefGoogle Scholar
  44. Weir, B. S., 1996. Intraspecific differentiation. In Hillis, D. M., C. Moritz & B. Mable (eds), Molecular Systematics, 2nd ed. Sinauer, Sunderland, MA.Google Scholar
  45. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar
  46. Wright, S., 1969. Evolution and the genetics of populations. In The Theory of Gene Frequencies, Vol. 2. University of Chicago Press, Chicago: 511.Google Scholar
  47. Zardoya, R., D. A. Vollmer, C. Craddock, J. T. Streelman, S. Karl & A. Meyer, 1996. Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pices: Perciformes). Proceedings of the Royal Society B: Biological Sciences 263: 1589–1598.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Dieter Anseeuw
    • 1
    Email author
  • Gregory E. Maes
    • 2
  • Paul Busselen
    • 1
  • Dries Knapen
    • 3
  • Jos Snoeks
    • 4
    • 5
  • Erik Verheyen
    • 6
  1. 1.Interdisciplinary Research CentreKatholieke Universiteit Leuven Campus KortrijkKortrijkBelgium
  2. 2.Laboratory of Aquatic Ecology and Evolutionary BiologyKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Laboratory for Ecophysiology, Biochemistry and ToxicologyUniversity of AntwerpAntwerpenBelgium
  4. 4.Zoology DepartmentRoyal Museum for Central AfricaTervurenBelgium
  5. 5.Laboratory of Animal Diversity and SystematicsKatholieke Universiteit LeuvenLeuvenBelgium
  6. 6.Vertebrate DepartmentRoyal Belgian Institute of Natural SciencesBrusselsBelgium

Personalised recommendations