, Volume 618, Issue 1, pp 47–56

Overcrowding, food and phosphorus limitation effects on ephipphia production and population dynamics in the invasive species Daphnia lumholtzi

Primary research paper


Daphnia lumholtzi has been very successful in colonizing North America since its appearance in Texas in 1990. Although previous studies have sought to link its success as an invasive species with various aspects of its population biology, there is little experimental data linking the invasion success of D. lumholtzi with its autecology, specifically its reproduction strategy. In this study we sought to link food quality and quantity to diapause in D. lumholtzi through a variation in phosphorus (P) content of algae, food quantity, and light level. We also assessed the effect of Daphnia peak population densities on reproductive rates and production of resting eggs. We found that when food is abundant, per capita ephippia production may be limited by P, but under food limitation conditions, there is no significant effect of food quality on ephippia production. Our results suggest that a combination of food quality/quantity and population density may work together to induce the production of resting eggs in this invasive species.


Resting eggs Diapause Invasibility Food quality Food quantity Cladocera 


  1. Acharya, K., J. Jack & P. A. Bukaveckas, 2005. Dietary effects on life history of riverine Bosmina. Freshwater Biology 50: 965–975.CrossRefGoogle Scholar
  2. Acharya, K., J. Jack & A. S. Smith, 2006. Stoichiometry of Daphnia lumholtzi and their invasion success: are they linked?. Archiv für Hydrobiologie 165: 433–453.CrossRefGoogle Scholar
  3. Acharya, K., M. Kyle & J. J. Elser, 2004. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnology and Oceanography 49: 656–665.Google Scholar
  4. Alekseev, V., 2004. Effects of diel vertical migration on ephippia production in Daphnia. Journal of Limnology 63: 1–6.Google Scholar
  5. Alekseev, V. & W. Lampert, 2001. Maternal control of resting-egg production in Daphnia. Nature 414: 899–901.PubMedCrossRefGoogle Scholar
  6. APHA, 1998. Standard methods for the examination of water and wastewater. American Public Health Association/Water Environment Federation, Washington, DC.Google Scholar
  7. Arendt, J. D., 1997. Adaptive intrinsic growth rates: an integration across taxa. The Quarterly Review of Biology 72: 149–198.CrossRefGoogle Scholar
  8. Boersma, M. & C. Kreutzer, 2002. Life at the edge: Is food quality really of minor importance at low quantities? Ecology 83: 2552–2561.Google Scholar
  9. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: Evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  10. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of the plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  11. Cáceres, C., 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699–1710.Google Scholar
  12. Cáceres, C. & A. J. Tessier, 2003. How long to rest: the ecology of optimal dormancy and environmental constraint. Ecology 84: 1189–1198.CrossRefGoogle Scholar
  13. Cáceres, C. & A. J. Tessier, 2004. Incidence of diapause varies among populations of Daphnia pulicaria. Oecologia 141: 425–431.PubMedCrossRefGoogle Scholar
  14. Carpenter, S. R. & J. F. Kitchell, 1984. Plankton community structure and limnetic primary production. American Naturalist 124: 159–172.CrossRefGoogle Scholar
  15. Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343–366.CrossRefGoogle Scholar
  16. DeMott, W. R., R. D. Gulati & K. Siewertsen, 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnology and Oceanography 43: 1147–1161.CrossRefGoogle Scholar
  17. Deng, H. W., 1996. Environmental and genetic control of sexual reproduction in Daphnia. Heredity 76: 449–458.CrossRefGoogle Scholar
  18. Dodson, S. I., 1990. Predicting diel vertical migration of zooplankton. Limnology and Oceanography 35: 1195–1200.Google Scholar
  19. Ellner, S. P., N. G. Hairston Jr & D. Babaï, 1998. Long-term diapause and spreading of risk across the life cycle. Archiv für Hydrobiologie Special Issues Advances in Limnology 52: 297–312.Google Scholar
  20. El Moghraby, A. I., 1977. A study on diapause of zooplankton in a tropical river–The Blue Nile. Freshwater Biology 7: 207–212.CrossRefGoogle Scholar
  21. Elser, J. J., K. Acharya, J. Cotner, W. Makina, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade & R. W. Sterner, 2003. Growth rates-stoichiometric couplings in diverse biota. Ecology Letters 6: 936–943.CrossRefGoogle Scholar
  22. Elser, J. J., H. Hayakawa & J. Urabe, 2001. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82: 898–903.Google Scholar
  23. Færøvig, P. J. & D. O. Hessen, 2003. Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshwater Biology 48: 1782–1792.CrossRefGoogle Scholar
  24. Ferrari, D. C. & P. D. N. Hebert, 1982. The induction of sexual reproduction in Daphnia magna: genetic differences between arctic and temperate populations. Canadian Journal of Zoology 60: 2143–2148.CrossRefGoogle Scholar
  25. George, D. G. & R. W. Edwards, 1974. Population dynamics and production of Daphnia hyaline in a eutrophic reservoir. Freshwater Biology 4: 445–465.CrossRefGoogle Scholar
  26. Gersich, F. M. & D. L. Hopkins, 1986. Site-specific acute and chronic toxicity of ammonia to Daphnia magna Straus. Environmental Toxicology and Chemistry 5: 443–447.CrossRefGoogle Scholar
  27. Gilbert, J. J., 2003. Specificity of crowding response that induces sexuality in the rotifer Branchionus. Limnology and Oceanography 48: 1297–1303.Google Scholar
  28. Gilbert, J. J. & D. Schreiber, 1995. Induction of diapausing amictic eggs in Synchaeta pectinata. Hydrobiologia 313/314: 345–350.CrossRefGoogle Scholar
  29. Gorokhova, E. & M. Kyle, 2002. Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA-DNA content. Journal of Plankton Research 24: 511–522.CrossRefGoogle Scholar
  30. Gulati, R. & W. Demott, 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives, and priorities. Freshwater Biology 38: 753.CrossRefGoogle Scholar
  31. Hairston Jr., N. G., R. A. Van Brunt & C. M. Kearns, 1995. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76: 1706–1711.CrossRefGoogle Scholar
  32. Havel, J. E., W. R. Mabee & J. R. Jones, 1995. Invasion of the exotic cladoceran Daphnia lumholtzi into North American reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 52: 151–160.CrossRefGoogle Scholar
  33. Hebert, P. D. N., 1987. Genotypic characteristics of the Cladocera. Hydrobiologia 145: 183–193.CrossRefGoogle Scholar
  34. Innes, D. J. & D. R. Singleton, 2000. Variation in allocation to sexual and asexual reproduction among clones of cyclically parthenogenetic Daphnia pulex (Crustacea: Cladocera). Biological Journal of the Linnean Society 71: 771–787.Google Scholar
  35. Johnson, J. & J. Havel, 2001. Competition between native and exotic Daphnia: in situ experiments. Journal of Plankton Research 43: 373–387.CrossRefGoogle Scholar
  36. Kiesecker, J. M. & A. R. Blaustein, 1997. Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78: 1752–1760.Google Scholar
  37. Kyle, M., K. Acharya, L. J. Weider, K. Looper & J. J. Elser, 2006. Coupling of growth rate and body stoichiometry in Daphnia: a role for maintenance processes? Freshwater Biology 51: 2087–2095.CrossRefGoogle Scholar
  38. McCauley, E., W. W. Murdoch & R. M. Nisbet, 1990. Growth, reproduction, and mortality of Daphniapulex Leydig: life at low food. Functional Ecology 4: 505–514.CrossRefGoogle Scholar
  39. Mergeay, J., D. Verschuren, L. Van Kerckhoven & L. De Meester, 2004. Two hundred years of a diverse Daphnia community in Lake Naivasha (Kenya): effects of natural and human-induced environmental change. Freshwater Biology 49: 998–1013.CrossRefGoogle Scholar
  40. Muzinic, C. J., 2000. First record of Daphnia lumholtzi Sars in the Great Lakes. Journal of Great Lakes Research 26: 352–354.Google Scholar
  41. Riccardi, N., G. Giussani, F. Margaitora & B. Couchaud, 2004. Population dynamics of the pioneer population of Daphnia parvula, Fordyce during the invasion of Lake Candia (Northern Italy). Journal of Limnology 63: 44–52.Google Scholar
  42. Schroder, T. & J. J. Gilbert, 2004. Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowding. Functional Ecology 18: 458–466.CrossRefGoogle Scholar
  43. Slusarcyzk, M., 1995. Predator-induced diapause in Daphnia. Ecology 76: 1008–1013.CrossRefGoogle Scholar
  44. Slusarcyzk, M., 2004. Environmental plasticity of fish avoidance diapause response in Daphnia magna. Journal of Limnology 63: 70–74.Google Scholar
  45. Slusarcyzk, M., P. Dawidowicz & E. Rygielska, 2005. Hide, rest or die: a light-mediated diapause response in Daphnia magna to the threat of fish predation. Freshwater Biology 50: 141–146.CrossRefGoogle Scholar
  46. Slusarcyzk, M. & E. Rygielska, 2004. Fish feces as the primary source of chemical cues inducing fish avoidance diapause in Daphnia magna. Archiv für Hydrobiologie 526: 231–234.Google Scholar
  47. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  48. Sorensen, K. H. & R. W. Sterner, 1992. Extreme cyclomorphosis in Daphnia lumholtzi. Freshwater Biology 28: 257–262.CrossRefGoogle Scholar
  49. Starkweather, P. L., 1978. Diel variation in feeding behavior of Daphnia pulex. Influences of food density and nutritional history on mandibular activity. Limnology and Oceanography 23: 307–317.CrossRefGoogle Scholar
  50. Sterner, R. W. & J. Robinson, 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnology and Oceanography 39: 1229–1233.Google Scholar
  51. Strayer, D. L., K. A. Hattala & A. W. Kahnle, 2004. Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 61: 924–941.CrossRefGoogle Scholar
  52. Stross, R. G. & J. C. Hill, 1965. Diapause induction in Daphnia requires two stimuli. Science 150: 1462–1464.PubMedCrossRefGoogle Scholar
  53. Urabe, J., M. Kyle, W. Makino, T. Yoshida, T. Anderson & J. J. Elser, 2002. Reduced light increases herbivore production due to stoichiometric effects of light/nutrient balance. Ecology 83: 619–627.Google Scholar
  54. Wagner, C. M., M. L. Jones, M. B. Twohey & P. W. Sorensen, 2006. A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 63: 475–479.CrossRefGoogle Scholar
  55. Williamson, C. E. & L. J. Stoeckel, 1989. Predation risk and the structure of fresh-water zooplankton communities. Oecologia 79: 76–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Allison S. Smith
    • 1
  • Kumud Acharya
    • 2
  • Jeffrey Jack
    • 1
  1. 1.Department of Biology and Center for Environmental Science, 139 Life SciencesUniversity of LouisvilleLouisvilleUSA
  2. 2.Division of Hydrologic SciencesDesert Research InstituteLas VegasUSA

Personalised recommendations