Advertisement

Hydrobiologia

, Volume 614, Issue 1, pp 83–90 | Cite as

Contribution of planktonic and detritic fractions to the natural diet of mesozooplankton in Bahía Blanca Estuary

  • Soledad Lorena Diodato
  • Mónica Susana Hoffmeyer
PLANKTON STUDIES

Abstract

The relative importance of phytoplankton and microzooplankton in the natural diet of mesozooplankton was assessed in Bahía Blanca Estuary, Argentina, in December 2005. Grazing experiments were performed using 200–2,000 μm grazers and natural food <100 μm. Individual and community filtration and ingestion rates were estimated for each food fraction after 24 h incubation. Abundance and carbon data of prey and grazers were qualitatively and quantitatively analyzed. Phytoplankton was mainly composed of diatoms and microzooplankton mainly of tintinnids. Both fractions were less abundant than detritus. Most of the grazers belonged to the copepod Acartia tonsa. Mean filtration and ingestion rates on phytoplankton + microzooplankton were 6.44 ml grazer−1 day−1 and 0.03 μg C grazer−1 day−1, respectively. This figure increased to 6.95 ml grazer−1 day−1 and 1.65 μg C grazer−1 day−1 when detritus was included. Mean carbon-specific ingestion rates on phytoplankton and microzooplankton were 0.006 and 0.005 μg C μg C−1 day−1, respectively, whereas after the addition of detritus, the overall rate increased to 0.588 μg C μg C−1 day−1. Highly significant differences were found between grazing rates on detritus and planktonic fractions. Consumers showed higher filtration rates on microzooplankton than on phytoplankton, although 78% of the cells ingested (54.7% μg C) came from the latter. The results point to a higher contribution of detritus to the natural diet of mesozooplankton in late spring. The omnivory of A. tonsa and the high turbidity of Bahía Blanca Estuary may explain the differences observed among food fractions in terms of carbon intake.

Keywords

Grazing Mesozooplankton Phytoplankton Microzooplankton Detritus 

Notes

Acknowledgments

Thanks are due to the staff of IADO for their assistance with the sampling. Thanks are also due to Comisión de Invesigaciones Científicas (CIC) for the fellowship awarded to S.L.D. during the study period. This work was funded by ANPCYT-FONCYT grant PICTR N° 090/2002.

References

  1. Båmstedt, U., D. J. Gifford, X. Irigoien, A. Atkinson & M. Roman, 2000. Feeding. In Harris, R. P., P. H. Wiebe, J. Lenz, H. R. Skjoldal & M. Huntley (eds), Zooplankton Methodology Manual. Academic Press, San Diego: 297–399.CrossRefGoogle Scholar
  2. Clesceri, L. S., A. E. Greenberg & A. D. Eaton, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA, Washington.Google Scholar
  3. Dam, H. G., W. T. Peterson & D. C. Bellantoni, 1994. Seasonal feeding and fecundity of the calanoid copepod Acartia tonsa in Long Island Sound: is omnivory important to egg production? Hydrobiologia 292(293): 191–199.Google Scholar
  4. David, V., B. Sautour, R. Galois & P. Chardy, 2006. The paradox high zooplankton biomass—low vegetal particulate organic matter in high turbidity zones: what way for energy transfer? Journal of Experimental Marine Biology and Ecology 333: 202–218.CrossRefGoogle Scholar
  5. Eppley, R. W., F. M. H Reid & J. D. H. Strickland, 1970. The ecology of the plankton off La Jolla, California, in the period April through September, 1967. In Strickland, J. D. H. (ed.), pt III. Estimates of phytoplankton crop size, growth rate and primary production. Bulletin of the Scripps Institution of Oceanography 17: 33–42.Google Scholar
  6. Federici, G. A., D. G. Cuadrado & E. A. Gómez, 2004. Procesos hidrosedimentológicos y meteorológicos relacionados con la sedimentación de un puerto. Geoacta 29: 71–81.Google Scholar
  7. Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.Google Scholar
  8. Gayoso, A. M., 1999. Seasonal succession patterns of phytoplankton in the Bahía Blanca Estuary (Argentina). Botánica Marina 42: 367–375.CrossRefGoogle Scholar
  9. Gifford, D. J. & M. J. Dagg, 1988. Feeding of the estuarine copepod Acartia tonsa Dana: carnivory vs. herbivory in natural microplankton assemblages. Bulletin of Marine Science 43: 458–468.Google Scholar
  10. Gifford, D. J. & M. J. Dagg, 1991. The microzooplankton–mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murukawa. Marine Microbial Food Webs 5: 161–177.Google Scholar
  11. Hasle, G., 1978. The inverted microscope method. In Sournia, A. (ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology, Vol. 6. UNESCO, Paris: 88–96.Google Scholar
  12. Heinle, D. R., R. P. Harris, J. F. Ustach & D. A. Flemer, 1977. Detritus as food for estuarine copepods. Marine Biology 40: 341–353.CrossRefGoogle Scholar
  13. Hoffmeyer, M. S., 1987. Estudios relativos a la alimentación del copépodo planctónico Acartia tonsa Dana en el estuario de Bahía Blanca. Tesis Doctoral. Universidad Nacional de La Plata. La Plata, Argentina. 259 pp.Google Scholar
  14. Hoffmeyer, M. S., 2004. Decadal change in zooplankton seasonal succession in the Bahía Blanca Estuary, Argentina, following introduction of two zooplankton species. Journal of Plankton Research 26: 1–9.CrossRefGoogle Scholar
  15. Irigoien, X. & J. Castel, 1995. Feeding rates and productivity of the copepod Acartia bifilosa in a highly turbid estuary; the Gironde (SW France). Hydrobiologia 311: 115–125.CrossRefGoogle Scholar
  16. Jones, R. H., K. J. Flynn & T. R. Anderson, 2002. Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Marine Ecology Progress Series 235: 147–156.CrossRefGoogle Scholar
  17. Mann, K. H. & R. N. Lazier, 1991. Dynamics of Marine Ecosystems. Biological–Physical Interactions in the Oceans. Blackwell Scientific Publications, Boston.Google Scholar
  18. Nival, P. & S. Nival, 1976. Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects on grazing. Limnology and Oceanography 21: 24–38.Google Scholar
  19. Pettigrosso, R. E. & M. S. Barría de Cao, 2007. Ciliados planctónicos. In Piccolo, M. C. & M. S. Hoffmeyer (eds), Ecosistema del estuario de Bahía Blanca. Editorial de la Universidad Nacional del Sur, Bahía Blanca: 121–131.Google Scholar
  20. Perillo, G. M. E., M. C. Piccolo, E. R. Parodi & R. H. Freije, 2001a. The Bahía Blanca Estuary, Argentina. In Seeliger, U. & B. Kjerfve (eds), Coastal Marine Ecosystems of Latin America, Ecological Studies 144, Springer: 205–217.Google Scholar
  21. Perillo, G. M. E., J. O. Pierini, D. E. Pérez & E. A. Gómez, 2001b. Suspended sediment circulation in semi-enclosed docks, Puerto Galván, Argentina. Terra et Aqua 83: 13–20.Google Scholar
  22. Perillo, G. M. E., M. C. Piccolo, E. D. Palma, D. E. Pérez & J. O. Pierini, 2007. Oceanografía física. In Piccolo, M. C. & M. S. Hoffmeyer (eds), Ecosistema del estuario de Bahía Blanca. Editorial de la Universidad Nacional del Sur, Bahía Blanca: 61–67.Google Scholar
  23. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103.CrossRefGoogle Scholar
  24. Roman, M. R., 1984. Feeding of detritus by the copepod Acartia tonsa. Limnology and Oceanography 29: 949–959.Google Scholar
  25. Stoecker, D. K. & J. M. Capuzzo, 1990. Predation on Protozoa: its importance to zooplankton. Journal of Plankton Research 12: 891–908.CrossRefGoogle Scholar
  26. Verity, P. G. & C. Langdon, 1984. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. Journal of Plankton Research 6: 859–868.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Soledad Lorena Diodato
    • 1
  • Mónica Susana Hoffmeyer
    • 2
    • 3
  1. 1.Centro Austral de Investigaciones Científicas CADIC (CONICET) UshuaiaArgentina
  2. 2.Instituto Argentino de Oceanografía (CONICET-UNS)Bahía BlancaArgentina
  3. 3.Facultad Regional Bahía Blanca, Universidad Tecnológica NacionalBahía BlancaArgentina

Personalised recommendations