, Volume 614, Issue 1, pp 373–386 | Cite as

Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists?

  • Aloisie PoulíčkováEmail author
  • Jana Špačková
  • Martyn G. Kelly
  • Martin Duchoslav
  • David G. Mann
Primary research paper


The genus Sellaphora has become a model system for studies of the species concept, speciation and automated identification in diatoms. Three species, S. pupula, S. bacillum and S. laevissima, have proved to be complexes containing several or many species, which are difficult to distinguish morphologically but which are genetically differentiated and (where tested) reproductively isolated. Until now, however, there has been little information about the ecology of the species within this complex, except in relation to parasite sensitivity. In order to test whether semi- and pseudo-cryptic Sellaphora species are ecologically differentiated with respect to trophic status, we used tools recently developed in the UK in response to the EU Water Framework Directive (WFD). Diatom samples from three substrata (plants, rocks, sediment) were taken from 22 lakes in Scotland and England, covering a gradient from oligotrophic mountain lakes to eutrophic lowland ponds. The epilithic and epiphytic diatom assemblages were used to evaluate lake trophic status according to the UK WFD assessment system and showed that there was a strong environmental gradient in the dataset. Sellaphora species occurred in the sediment-derived epipelon and their distributions were analysed in relation to the trophic gradient. A total of 28 Sellaphora phenodemes (putative species) were found, and some of them differed in their environmental demands. Two groups were distinguished: (1) a group indicating rather oligotrophic conditions and containing several demes with linear valves and subcapitate or capitate poles (referred to here as S. [pupula] cap-A, cap-B and cap-C and (2) a group occurring in eutrophic lakes and containing the recently described species S. blackfordensis, S. capitata and S. obesa, as well as S. [pupula] Φ ‘small lanceolate’. The data obtained are also discussed with respect to Finlay’s hypothesis on microalgal cosmopolitanism.


Epipelon Diatoms Cryptic species Ecological differentiation Water Framework Directive Ubiquity hypothesis 



The helpful comments of two anonymous reviewers are gratefully acknowledged. This research was supported by project GACR 206/07/0115 from the Czech Republic and an EU Framework 6 SYNTHESYS GB-TAF-643 award to Assoc. Prof. Aloisie Poulíčková.


  1. Amato, A., W. H. C. F. Kooistra, J. H. Levialdi Ghiron, D. G. Mann, T. Proschold & M. Montresor, 2007. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158: 193–207.PubMedCrossRefGoogle Scholar
  2. Atazadeh, I., M. Sharifi & M. G. Kelly, 2007. Evaluation of the trophic diatom index for assessing water quality in River Gharasou, western Iran. Hydrobiologia 589: 165–173.CrossRefGoogle Scholar
  3. Baas-Becking, L. G. M., 1934. Geobiologie of Inleiding tot de Milieukunde. Van Stockum and Zoon, The Hague.Google Scholar
  4. Bayer, M. M., S. J. M. Droop & D. G. Mann, 2001. Digital imaging as a tool in phycological research, with especial reference to microalgae. Phycological Research 49: 263–274.CrossRefGoogle Scholar
  5. Behnke, A., T. Friedl, V. A. Chepurnov & D. G. Mann, 2004. Reproductive compatibility and rDNA sequence analyses in the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology 40: 193–208.Google Scholar
  6. Beszteri, B., E. Ács & L. K. Medlin, 2005. Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. Protist 156: 317–333.PubMedCrossRefGoogle Scholar
  7. Beszteri, B., U. John & L. K. Medlin, 2007. An assessment of cryptic genetic diversity within the Cyclotella meneghiniana species complex (Bacillariophyta) based on nuclear and plastid genes, and amplified fragment length polymorphisms. European Journal of Phycology 42: 47–60.CrossRefGoogle Scholar
  8. Bruna, E. M., R. N. Fisher & T. J. Case, 1996. New evidence of habitat segregation between two cryptic species of pacific skinks (Emoia cyanura and E. impar). Copeia 4: 995–1005.Google Scholar
  9. Dawson, M. N. & D. K. Jacobs, 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin 200: 92–96.PubMedCrossRefGoogle Scholar
  10. Denys, L., 2006. Calibration of littoral diatoms to water chemistry in standing fresh waters (Flanders, Lower Belgium): Inference models for historical sediment assemblages. Journal of Paleolimnology 35: 763–787.CrossRefGoogle Scholar
  11. Evans, K. M., A. H. Wortley & D. G. Mann, 2007. An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158: 349–364.PubMedCrossRefGoogle Scholar
  12. Evans, K. M., A. H. Wortley, G. E. Simpson, V. A. Chepurnov & D. G. Mann, 2008. A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology 44: 215–231.CrossRefGoogle Scholar
  13. Fernandez, C. C., J. R. Shevock, A. N. Glazer & J. N. Thompson, 2006. Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata. Proceedings of the National Academy of Sciences of the U. S. A. 103: 637–642.CrossRefGoogle Scholar
  14. Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.PubMedCrossRefGoogle Scholar
  15. Finlay, B. J. & K. J. Clarke, 1999a. Ubiquitous dispersal of microbial species. Nature 400: 828.CrossRefGoogle Scholar
  16. Finlay, B. J. & K. J. Clarke, 1999b. Apparent global ubiquity of species in the protist genus Paraphysomonas. Protist 150: 419–430.PubMedCrossRefGoogle Scholar
  17. Finlay, B. J., E. B. Monaghan & S. C. Maberly, 2002. Hypothesis: The rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153: 261–273.PubMedCrossRefGoogle Scholar
  18. Geitler, L., 1932. Der Formwechsel der pennaten Diatomeen (Kieselalgen). Archiv für Protistenkunde 78: 1–226.Google Scholar
  19. Geitler, L., 1951. Der Bau des Zellkerns von Navicula radiosa und verwandten Arten und die präanaphasische Trennung von Tochtercentromeren. Österreichische Botanische Zeitschrift 98: 206–214.CrossRefGoogle Scholar
  20. Geitler, L., 1952a. Untersuchungen über Kopulation und Auxosporenbildung pennater Diatomeen III. Gleichartigkeit der Gonenkerne und Verhalten des Heterochromatins bei Navicula radiosa. Österreichische Botanische Zeitschrift 99: 469–482.CrossRefGoogle Scholar
  21. Geitler, L., 1952b. Untersuchungen über Kopulation und Auxosporenbildung pennater Diatomeen IV. V. IV. Vierkernige Zygoten bei Navicula cryptocephala var. veneta fa. V. Allogamie bei Synedra rumpens var. fragilarioides. Österreichische Botanische Zeitschrift 99: 598–605.CrossRefGoogle Scholar
  22. Geitler, L., 1958. Notizen über Rassenbildung, Fortpflanzung, Formwechsel und morphologische Eigentümlichkeiten bei pennaten Diatomeen. Österreichische Botanische Zeitschrift 105: 408–442.CrossRefGoogle Scholar
  23. Gilmour, J. S. L. & J. Heslop-Harrison, 1954. The deme terminology and the units of micro-evolutionary change. Genetica 27: 147–161.PubMedCrossRefGoogle Scholar
  24. Heinsalu, A., T. Alliksar, A. Leeben & T. Nõges, 2007. Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Pepsi Estonia/Russia). Hydrobiologia 584: 133–143.CrossRefGoogle Scholar
  25. Heinsalu, A., H. Luup, T. Alliksar, P. Nõges & T. Nõges, 2008. Water level changes in a large shallow lake as reflected by the plankton: Periphyton-ratio of sedimentary diatoms. Hydrobiologia 599: 23–30.CrossRefGoogle Scholar
  26. Hubbell, S. P., 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.Google Scholar
  27. Hustedt, F., 1927–1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz unter Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete. In Rabenhorsts, L. (ed.), Kryptogamenflora von Deutschland, Österreich und der Schweiz, Vol. 7. Akademische Verlagsgesellschaft, Leipzig.Google Scholar
  28. Hustedt, F., 1930. Bacillariophyta. In Pascher, A. (ed.), Die Süsswasser-Flora Mitteleuropas, Vol. 10. G. Fischer, Jena: 1–466.Google Scholar
  29. Kelly, M. G. & B. A. Whitton, 1995. Trophic diatom index—a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  30. Kelly, M. G., M. M. Bayer, J. Hürlimann & R. J. Telford, 2002. Human error and quality assurance in diatom analysis. In du Buf, H. & M. M. Bayer (eds), Automatic Diatom Identification. World Scientific, New Jersey: 75–91.Google Scholar
  31. Kelly M. G., S. Juggins, H. Bennion, A. Burgess, M. Yallop, H. Hirst, L. King, J. Jamieson, R. Guthrie & B. Rippey, 2006. Use of diatoms for evaluating ecological status in UK freshwaters. Final report to Environment Agency, Bristol.Google Scholar
  32. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Vol. 2/1. G. Fischer, Stuttgart & New York.Google Scholar
  33. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Vol. 2/2. G. Fischer, Stuttgart & New York.Google Scholar
  34. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Vol. 2/3. G. Fischer, Stuttgart & New York.Google Scholar
  35. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Vol. 2/2. G. Fischer, Stuttgart & New York.Google Scholar
  36. Kucera, M. & K. F. Darling, 2002. Cryptic species of planktonic foraminifera: Their effect on palaeoceanographic reconstructions. Philosophical Transactions of the Royal Society of London, Series A 360: 695–718.CrossRefGoogle Scholar
  37. Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  38. Lundholm, N., Ø. Moestrup, Y. Kotaki, K. Hoef-Emden, C. Scholin & P. Miller, 2006. Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. Journal of Phycology 42: 464–481.CrossRefGoogle Scholar
  39. Mann, D. G., 1984. Observations on copulation in Navicula pupula and Amphora ovalis in relation to the nature of diatom species. Annals of Botany 54: 429–438.Google Scholar
  40. Mann, D. G., 1989. The species concept in diatoms: Evidence for morphologically distinct, sympatric gamodemes in four epipelic species. Plant Systematics and Evolution 164: 215–237.CrossRefGoogle Scholar
  41. Mann, D. G., 1999. The species concept in diatoms. Phycologia 38: 437–495.CrossRefGoogle Scholar
  42. Mann, D. G. & S. J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19–32.Google Scholar
  43. Mann, D. G. & J. P. Kociolek, 1990. The species concept in diatoms: Report on a workshop. In Simola, H. (ed.), Proceedings of the 10th International Diatom Symposium, Koeltz Scientific Books, Koenigstein: 577–583.Google Scholar
  44. Mann, D. G., V. A. Chepurnov & S. J. M. Droop, 1999. Sexuality, incompatibility, size variation, and preferential polyandry in natural populations and clones of Sellaphora pupula (Bacillariophyceae). Journal of Phycology 35: 152–170.CrossRefGoogle Scholar
  45. Mann, D. G., S. M. McDonald, M. M. Bayer, S. J. M. Droop, V. A. Chepurnov, R. E. Loke, A. Ciobanu & J. M. H. Du Buf, 2004. The Sellaphora pupula species complex (Bacillariophyceae): Morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43: 459–482.CrossRefGoogle Scholar
  46. Mann, D. G., S. J. Thomas & K. M. Evans, 2008. Revision of the diatom genus Sellaphora: A first account of the larger species in the British Isles. Fottea 8: 15–78.Google Scholar
  47. Miura, O., M. E. Torchin, A. M. Kuris, R. F. Hechinger & S. Chiba, 2006. Introduced cryptic species of parasites exhibit different invasion pathways. Proceedings of the National Academy of Sciences of the U. S. A. 103: 19818–19823.CrossRefGoogle Scholar
  48. Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.CrossRefGoogle Scholar
  49. Potapova, M. & P. Snoeijs, 1997. The natural life cycle in wild populations of Diatoma moniliformis (Bacillariophyceae) and its disruption in an aberrant environment. Journal of Phycology 33: 924–937.CrossRefGoogle Scholar
  50. Poulíčková, A. & D. G. Mann, 2006. Sexual reproduction in Navicula cryptocephala (Bacillariophyceae). Journal of Phycology 42: 872–886.CrossRefGoogle Scholar
  51. Proshkina-Lavrenko, A. I. (ed.), 1950. Diatomovyj analiz, Vol. 3. Opredelitel’ iskopaemykh i sovremennykh diatomovykh vodoroslej: Poryadok Pennales. Gosudarstvennoe izdatel’stvo geologicheskoj literatury, Leningrad.Google Scholar
  52. Raven, J. A. & J. E. Kübler, 2002. New light on the scaling of metabolic rate with the size of algae. Journal of Phycology 38: 11–16.CrossRefGoogle Scholar
  53. Rocha-Olivares, A., J. W. Fleeger & D. W. Foltz, 2004. Differential tolerance among cryptic species: A potential cause of pollutant-related reductions in genetic diversity. Environmental Toxicology and Chemistry 23: 2132–2137.PubMedCrossRefGoogle Scholar
  54. Round, F. E., 1953. An investigation of two benthic algal communities in Malham Tarn, Yorkshire. Journal of Ecology 41: 174–179.CrossRefGoogle Scholar
  55. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge.Google Scholar
  56. Sarno, D., W. H. C. F. Kooistra, L. K. Medlin, I. Percopo & A. Zingone, 2005. Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. Journal of Phycology 41: 151–176.CrossRefGoogle Scholar
  57. Schoeman, F. R. & R. E. M. Archibald, 1976–1980. The diatom flora of southern Africa. CSIR Special Report WAT 50, Pretoria.Google Scholar
  58. Stenger-Kovács, C., K. Buczkó, É. Hajnal & J. Padisák, 2007. Epiphytic, littoral diatoms as indicators of shallow lake trophic status: Trophic diatom index for lakes (TDIL) developed in Hungary. Hydrobiologia 589: 141–154.CrossRefGoogle Scholar
  59. Stoermer, E. F. & J. P. Smol (eds), 1999. The diatoms: Applications for the environmental and earth Sciences. Cambridge University Press, Cambridge, UK.Google Scholar
  60. Telford, R. J., V. Vandvik & H. J. B. Birks, 2006. Dispersal limitations matter for microbial morphospecies. Science 312: 1015–1015.PubMedCrossRefGoogle Scholar
  61. Telford, R. J., V. Vandvik & H. J. B. Birks, 2007. Response to comment on “dispersal limitations matter for microbial morphospecies”. Science 316: 1124.CrossRefGoogle Scholar
  62. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for windows users’guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, USA.Google Scholar
  63. Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton.Google Scholar
  64. van Dam, H., C. Stenger-Kovács, É. Ács, G. Borics, K. Buczkó, É. Hajnal, É. Soróczki-Pintér, G. Várbíró, B. Tóthmérész & J. Padisák, 2007. Implementation of the European Water Framework Directive: Development of a system for water quality assessment of Hungarian running waters with diatoms. Archiv für Hydrobiologie Suppl. 161, Large Rivers 17/304:339–383.Google Scholar
  65. VanLandingham, S. L., 1967–1978. Catalogue of the fossil and recent genera and species of diatoms and their synonyms. Vols. 1–8. J. Cramer, Lehre.Google Scholar
  66. Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. Vijver, V. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. Weve, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924–1931.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aloisie Poulíčková
    • 1
    Email author
  • Jana Špačková
    • 1
  • Martyn G. Kelly
    • 2
  • Martin Duchoslav
    • 1
  • David G. Mann
    • 3
  1. 1.Department of Botany, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  2. 2.Bowburn ConsultancyBowburnUK
  3. 3.Royal Botanic GardenEdinburghScotland, UK

Personalised recommendations