Hydrobiologia

, Volume 614, Issue 1, pp 243–257 | Cite as

Epipelic and pelagic primary production in Alaskan Arctic lakes of varying depth

  • Stephen C. Whalen
  • Brian A. Chalfant
  • Eric N. Fischer
Primary research paper

Abstract

We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow (\( \overline {\text{z}} \) < 2.5 m), intermediate in depth (2.5 m < \( \overline {\text{z}} \) < 4.5 m), and deep (\( \overline {\text{z}} \) > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3–N + NH4+–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased \( \overline {\text{z}} \) resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes.

Keywords

Primary production Phytoplankton Epipelic Arctic 

Notes

Acknowledgments

This research was supported by National Science Foundation grant NSF/DEB-0090202. We thank John Bonde (University of Minnesota—Duluth) for mapping lake bathymetry. Jeremiah Shackelford and Jason Hales provided field assistance, while Prasad Pathak generously constructed the location map.

References

  1. Björk-Ramberg, S., 1983. Production of epipelic algae before and during lake fertilization in a subarctic lake. Holarctic Ecology 6: 349–355.Google Scholar
  2. Björk-Ramberg, S. & C. Ånell, 1985. Production and chlorophyll concentration of epipelic and epilithic algae in fertilized and unfertilized subarctic lakes. Hydrobiologia 126: 213–219.CrossRefGoogle Scholar
  3. Bonilla, S., V. Villeneuve & W. F. Vincent, 2005. Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology 41: 1120–1130.CrossRefGoogle Scholar
  4. Bootsma, M. A., R. E. Heckey, R. H. Hesslein & G. F. Turner, 1996. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analysis. Ecology 77: 1286–1290.CrossRefGoogle Scholar
  5. Cariou-LeGall, V. & G. F. Blanchard, 1995. Monthly HPLC measurements of pigment concentration from an intertidal muddy sediment of Marennes-Oleron Bay, France. Marine Ecology Progress Series 121: 171–179.CrossRefGoogle Scholar
  6. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. Vonende, 1996. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.CrossRefGoogle Scholar
  7. Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192.Google Scholar
  8. Chalfant, B. A., 2004. A Landscape-level Analysis of Physical, Chemical and Biological Characteristics of 41 Arctic Lakes Near Toolik Lake, Alaska, USA. M.S. Thesis, University of North Carolina, Chapel Hill, NC.Google Scholar
  9. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Cararo, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds and impoundments. Limnology and Oceanography 51: 2388–2397.Google Scholar
  10. Duff, K. E., T. E. Laing, J. P. Smol & D. R. S. Lean, 1999. Limnological characteristics of lakes located across arctic treeline in northern Russia. Hydrobiologia 391: 205–222.Google Scholar
  11. Gettel, G. M., A. E. Giblin & R. W. Howarth, 2007. The effects of grazing by the snail, Lymnaea elodes, on benthic N 2 fixation and primary production in oligotrophic, arctic lakes. Limnology and Oceanography 52: 2398–2409.Google Scholar
  12. Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.CrossRefGoogle Scholar
  13. Hamilton, P. B., K. Gajewski, D. E. Atkinson & D. R. S. Lean, 2001. Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia 457: 133–148.CrossRefGoogle Scholar
  14. Hansson, L.-A., 1992. Factors regulating periphytic algal biomass. Limnology and Oceanography 37: 322–328.Google Scholar
  15. Hansson, L.-A., 1996. Algal recruitment from lake sediments in relation to grazing, sinking, and dominance patterns in the phytoplankton community. Limnology and Oceanography 41: 1312–1323.Google Scholar
  16. Heckey, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.CrossRefGoogle Scholar
  17. Hinzman, L. D., et al., 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72: 251–298.CrossRefGoogle Scholar
  18. Hobbie, J. E., 1964. Carbon 14 measurements of primary production in two Alaskan arctic lakes. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 15: 360–364.Google Scholar
  19. Hobbie, J. E., 1984. Polar limnology. In Taub, F. B. (ed.), Ecosystems of the World, Vol. 23. Lakes and Reservoirs. Elsevier, Amsterdam: 63–105.Google Scholar
  20. Kalff, J., 1967. Phytoplankton dynamics in an arctic lake. Journal of the Fisheries Research Board of Canada 24: 1861–1871.Google Scholar
  21. Kalff, J. & H. E. Welch, 1974. Phytoplankton production in Char Lake, a natural polar lake, and Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. Journal of the Fisheries Research Board of Canada 31: 621–636.Google Scholar
  22. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, UK.Google Scholar
  23. Kling, G. E., W. J. O’Brien, M. C. Miller & A. E. Hershey, 1992. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 240: 1–14.Google Scholar
  24. LaPerriere, J. L., J. R. Jones & D. K. Swanson, 2003. Limnology of Gates of the Arctic National Park and Preserve, Alaska. Lake and Reservoir Management 19: 108–121.CrossRefGoogle Scholar
  25. Levine, M. A. & S. C. Whalen, 2001. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455: 189–201.CrossRefGoogle Scholar
  26. Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.CrossRefGoogle Scholar
  27. Lim, D. S. S., M. S. V. Douglas, J. P. Smol & D. R. S. Lean, 2001. Physical and chemical limnological characteristics of 38 lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic. International Review of Hydrobiology 86: 1–22.CrossRefGoogle Scholar
  28. Michelutti, N., M. S. V. Douglas, D. R. S. Lean & J. P. Smol, 2002. Physical and chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wynniatt Bay, Victoria Island, Arctic Canada. Hydrobiologia 482: 1–13.CrossRefGoogle Scholar
  29. Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Archiv für Hydrobiologie 74: 97–131.Google Scholar
  30. O’Brien, W. J., A. E. Hershey, J. E. Hobbie, M. A. Hullar, G. W. Kipphut, M. C. Miller, B. Moller & J. R. Vestal, 1992. Control mechanisms of arctic lake ecosystems: a limnocorral experiment. Hydrobiologia 240: 143–188.Google Scholar
  31. O’Brien, W. J., M. Barfield, N. Bettez, A. E. Hershey, J. E. Hobbie, G. W. Kipphut, G. E. Kling & M. C. Miller, 2005. Long-term response and recovery to nutrient addition of a partitioned arctic lake. Freshwater Biology 50: 731–741.CrossRefGoogle Scholar
  32. Ogilvie, B. G. & S. F. Mitchell, 1998. Does sediment resuspension have persistent effects on phytoplankton? Experimental studies in three shallow lakes. Freshwater Biology 40: 51–63.CrossRefGoogle Scholar
  33. Overland, J. E., M. C. Spillane & N. N. Soreide, 2004. Integrated analysis of physical and biological pan-arctic change. Climatic Change 63: 291–322.CrossRefGoogle Scholar
  34. Palmer, M. A., A. P. Covich, S. Lake, P. Biro, J. J. Brooks, J. Cole, C. Dahm, J. Gilbert, W. Goedkoop, K. Martens, J. Verhoeven & W. J. Van De Bund, 2000. Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. BioScience 50: 1062–1075.CrossRefGoogle Scholar
  35. Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.Google Scholar
  36. Pienitz, R., J. P. Smol & D. R. S. Lean, 1997a. Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences 54: 330–346.CrossRefGoogle Scholar
  37. Pienitz, R., J. P. Smol & D. R. S. Lean, 1997b. Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences 54: 347–358.CrossRefGoogle Scholar
  38. Ping, C. L., J. G. Bockheim, J. M. Kimble, G. J. Michaelson & D. A. Walker, 1998. Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. Journal of Geophysical Research 103: 28917–28928.CrossRefGoogle Scholar
  39. Prowse, T. D., F. J. Wrona, J. D. Reist, J. J. Gibson, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35: 347–358.PubMedCrossRefGoogle Scholar
  40. Ramlal, P. S., R. H. Hesslein, R. E. Heckey, E. J. Fee, J. M. W. Rudd & S. J. Guilfdford, 1994. The organic carbon budget of a shallow Arctic tundra lake on the Tuktoyaktuk Peninsula, N.W.T., Canada. Biogeochemistry 24: 145–172.CrossRefGoogle Scholar
  41. Rautio, M. & W. F. Vincent, 2007. Isotopic analysis of the sources of organic carbon for zooplankton in shallow subarctic and arctic waters. Ecography 30: 77–87.Google Scholar
  42. Reddy, K. R., M. M. Fisher & D. Ivanhoff, 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality 25: 363–371.Google Scholar
  43. Roots, E. F., 1989. Climate change: high latitude regions. Climatic Change 15: 223–253.CrossRefGoogle Scholar
  44. Rühland, K. & J. P. Smol, 1998. Limnological characteristics of 70 lakes spanning arctic treeline from Coronation Gulf to Great Slave Lake in the Central Northwest Territories, Canada. International Review of Hydrobiology 83: 183–203.CrossRefGoogle Scholar
  45. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.CrossRefGoogle Scholar
  46. Schallenberg, M. & C. W. Burns, 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwater Biology 49: 143–159.CrossRefGoogle Scholar
  47. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.Google Scholar
  48. Schelske, C. L., H. J. Carrick & F. J. Aldridge, 1995. Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? Journal of the North American Benthological Society 14: 616–630.CrossRefGoogle Scholar
  49. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  50. Schindler, D. W. & J. P. Smol, 2006. Cumulative effects of climate warming and other human activities on freshwaters of arctic and subarctic North America. Ambio 35: 160–168.PubMedCrossRefGoogle Scholar
  51. Serrese, M. C., J. E. Walsh, F. S. I. Chapin, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morrison, T. Zhang & R. G. Barry, 2000. Observational evidence of recent change in the northern high latitude environment. Climatic Change 46: 159–207.CrossRefGoogle Scholar
  52. Sólorzano, L. & J. H. Sharp, 1980a. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751–754.Google Scholar
  53. Sólorzano, L. & J. H. Sharp, 1980b. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–757.Google Scholar
  54. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  55. Sorsa, K., 1976. Primary production of epipelic algae in Lake Suomunjärvi, Finnish North Karelia. Annales Botanici Fennici 16: 351–367.Google Scholar
  56. Stainton, M. P., 1973. A syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments. Journal of the Fisheries Research Board of Canada 30: 1441–1445.Google Scholar
  57. Stanley, D. W., 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57: 1015–1024.CrossRefGoogle Scholar
  58. Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, NY.Google Scholar
  59. Vadeboncoeur, Y. & D. M. Lodge, 1998. Dissolved inorganic carbon sources for epipelic algal production: sensitivity of primary production estimates to spatial and temporal distribution of 14C. Limnology and Oceanography 43: 1222–1226.Google Scholar
  60. Vadeboncoeur, Y. & D. M. Lodge, 2000. Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake nutrient manipulations. Journal of the North American Benthological Society 19: 68–81.CrossRefGoogle Scholar
  61. Vadeboncoeur, Y., D. M. Lodge & S. R. Carpenter, 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.CrossRefGoogle Scholar
  62. Vadeboncoeur, Y. & A. D. Steinman, 2002. Periphyton function in lake ecosystems. Scientific World Journal 2: 1–20.Google Scholar
  63. Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.CrossRefGoogle Scholar
  64. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.Google Scholar
  65. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.Google Scholar
  66. Vézina, S. & W. F. Vincent, 1997. Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biology 17: 523–534.CrossRefGoogle Scholar
  67. Wahrhaftig, C., 1965. Physiographic Divisions of Alaska. U.S. Geological Survey Professional Paper 482. U.S. Government Printing Office, Washington, D.C.Google Scholar
  68. Walker, M. W., D. A. Walker & N. A. Auerback, 1994. Plant communities of tussock tundra landscape in the Brooks Range Foothills. Journal of Vegetative Science 5: 843–866.CrossRefGoogle Scholar
  69. Weiss, R. F., 1974. Carbon dioxide in water and seawater. Marine Chemistry 2: 203–215.CrossRefGoogle Scholar
  70. Welch, H. E. & J. Kalff, 1974. Benthic photosynthesis and respiration in Char Lake. Journal of the Fisheries Research Board of Canada 31: 609–620.Google Scholar
  71. Welch, H. E., J. A. Legault & H. L. Kling, 1989. Phytoplankton, nutrients and primary production in fertilized and natural lakes at Saqvaqjuac, N.W.T. Canadian Journal of Fisheries and Aquatic Sciences 46: 90–107.CrossRefGoogle Scholar
  72. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnology and Oceanography 39: 1985–1992.CrossRefGoogle Scholar
  73. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  74. Whalen, S. C. & V. Alexander, 1983. Chemical influences on 14C and 15N primary production in an arctic lake. Polar Biology 5: 211–219.CrossRefGoogle Scholar
  75. Whalen, S. C. & V. Alexander, 1984. Diel variations in inorganic carbon and nitrogen uptake by phytoplankton in an arctic lake 1. Journal of Plankton Research 6: 571–590.CrossRefGoogle Scholar
  76. Whalen, S. C. & V. Alexander, 1986. Seasonal inorganic carbon and nitrogen transport in an arctic lake. Canadian Journal of Fisheries and Aquatic Sciences 43: 1177–1186.CrossRefGoogle Scholar
  77. Whalen, S. C., B. A. Chalfant, E. N. Fischer, K. A. Fortino & A. E. Hershey, 2006. Comparative influence of resuspended glacial sediment on physicochemical characteristics and primary production in two arctic lakes. Aquatic Science 68: 65–77.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Stephen C. Whalen
    • 1
  • Brian A. Chalfant
    • 1
  • Eric N. Fischer
    • 1
  1. 1.Department of Environmental Sciences and Engineering, CB #7431University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations