, 612:269 | Cite as

Satellite observations of main oceanographic processes to identify ecological associations in the Northern Arabian Sea for fishery resources exploration

  • Himmatsinh U. Solanki
  • Pradip C. Mankodi
  • Rashmin M. Dwivedi
  • Shailesh R. Nayak


Ecological associations are the inter-relationship between the species and their environment. Oceanographic processes like upwelling events and formation of eddies, rings, and fronts have been monitored using National Oceanic and Atmospheric Administration Advanced Very High Resolution (NOAA AVHRR) and Indian Remote Sensing Satellite-P4-Ocean Colour Monitor (IRS-OCM) data. Sea Surface Temperature (SST) and chlorophyll concentration (CC) images were derived from AVHRR and OCM, respectively. Upwelling event was monitored using AVHRR-SST by detecting the differences in surface water temperature. The formation of eddies, rings, cyclonic eddies, and anti-cyclonic eddies and their biological responses were studied using CC. Eddies and rings were found with high phytoplankton production in the form of bloom, which provide grazing ground for fishes. The anti-cyclonic eddies were found with very low CC, indicating the biological deserts in the ocean. The impacts of these processes on fish catch were studied using fishing operations data procured from Fishery Survey of India. In this paper, the occurrence of different oceanographic processes, their persistence, and relevance with catch statistics of fishery resources in the study area are discussed. The study explains the potentials of satellite remote sensing to establish the habitat linkage between oceanographic processes and fishery resources.


Oceanographic processes Satellite Remote sensing Fisheries 


  1. Anonymous, 1996. Fish catch Statistics Report for Year 1995. The Commissioner of Fisheries, Fisheries Department, State Government, Gujarat State, Gandhinagar.Google Scholar
  2. Banse, K., 1968. Hydrography of the Arabian Sea Shelf of India and Pakistan, and effect on demersal fisheries. Deep Sea Research 15: 45–79.Google Scholar
  3. Chauhan, P., M. Mohan, P. Matondkar, B. Kumari & S. Nayak, 2002. Surface chlorophyll-a estimation using IRS-P4 OCM data in the Arabian Sea. International Journal of Remote Sensing 23: 1663–1676.CrossRefGoogle Scholar
  4. Fiedler, P. C., G. B. Smith & R. M. Laurs, 1985. Fisheries application of satellite data in the eastern North Pacific. Marine Fisheries Review 46: 1–13.Google Scholar
  5. Gordon, H. R., R. W. Austin, D. A. Clark, W. A. Hovis & C. S. Yentsch, 1985. Ocean color measurements. Advances in Geophysics 27: 297–333.Google Scholar
  6. Laevastu, T. & T. Hayes, 1981. Fisheries oceanography. Fishing News Books, Norwich, England: 199.Google Scholar
  7. Laurs, R. M. & J. T. Burcks, 1985. Living marine resources applications. Advances in Geophysics 27: 419–452.Google Scholar
  8. Laurs, R. M., P. C. Fiedler & M. Montegomery, 1984. Albacore catch distributions relative to environmental features observed from satellite. Deep Sea Research 31: 1085–1099.CrossRefGoogle Scholar
  9. Maul, G. A., M. Roffer & F. M. Sousa, 1984. Remotely sensed oceanographic patterns and variability of blue fin tuna catch in the Gulf of Mexico. Oceanologica Acta 7: 469–479.Google Scholar
  10. McClain, P. C., W. G. Pichel & C. C. Walton, 1985. Comparative performance of AVHRR based multi channel sea surface temperature. Journal of Geophysical Research 90: 11587–11601.CrossRefGoogle Scholar
  11. Mohan, M., P. Chauhan, A. Mathur & R. M. Dwivedi, 1998. Atmospheric correction of MOS-B data using long wavelength and PCI based approaches. Scientific Report, SAC/RESA/MWRD/IRSP3/SN/02/98: 14–22.Google Scholar
  12. Narayana, A., H. U. Solanki, B. G. Krishna & A. Narain, 1995. Geometric correction and radiometric normalisation of NOAA AVHRR data for fisheries application. International Journal of Remote Sensing 16: 765–771.CrossRefGoogle Scholar
  13. Njoku, E. G., T. P. Barnett, R. M. Laurs & A. C. Vasano, 1986. Advances in satellite sea surface temperature measurement and oceanographic applications. Journal of Geophysical Research 90: 11571–11586.CrossRefGoogle Scholar
  14. O’Reilly, J. E., S. Maritonena, B. G. Mitchell, D. A. Siegal, K. L. Carder, S. A. Graver, M. Kahru & C. R. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysics 103: 24937–24963.CrossRefGoogle Scholar
  15. Podestra, G. P., J. A. Browder & J. J. Hoey, 1993. Exploring the association between swordfish catch rates and thermal fronts on US longline grounds in the Western North Atlantic. Continental Shelf Research 13: 253–277.CrossRefGoogle Scholar
  16. Solanki, H. U., R. M. Dwivedi & A. Narain, 1998a. Satellite observations of coastal upwelling in the Northern Arabian Sea and its impact on fishery resources. Proceedings of the International Symposium on Information Technology in Oceanography (ITO, 1998), October 1998, Goa, India: 12–16.Google Scholar
  17. Solanki, H. U., R. M. Dwivedi & S. R. Nayak, 1998b. Relationship between IRS MOS-B derived chlorophyll and NOAA AVHRR SST: a case study in the North West Arabian Sea, India. Proceedings of 2nd International workshop on MOS-IRS and Ocean Colour. Institute of Space Sensor Technology, Berlin, Germany: 327–339.Google Scholar
  18. Solanki H. U., R. M. Dwivedi & S. R. Nayak, 2000. Generation of composite image using OCM chlorophyll and NOAA AVHRR SST for locating potential fishing grounds. In Proceedings PORSEC 2000 vol II, 669–672.Google Scholar
  19. Solanki H. U., R. M. Dwivedi & S. R. Nayak, 2001a. Synergistic analysis of Sea WiFS chlorophyll and NOAA AVHRR derived SST features for marine living resources. International Journal of Remote Sensing 22(8): 3877–3882.CrossRefGoogle Scholar
  20. Solanki H. U., R. M. Dwivedi & S. R. Nayak, 2001b. Application of OCM chlorophyll and AVHRR SST for fishery forecast: Preliminary results off Gujarat coast. Indian Journal of Marine Science 30(3): 132–138.Google Scholar
  21. Solanki, H. U., R. M. Dwivedi & S. R. Nayak, 2003a. Application of remotely sensed closely coupled biological and physical process for marine fishery resources exploration. Journal of Society of Indian Remote Sensing 31: 67–70.CrossRefGoogle Scholar
  22. Solanki, H. U., R. M. Dwivedi, S. R. Nayak, V. S. Somvanshi, D. K. Gulati & S. K. Pattnayak, 2003b. Fishery forecast using OCM chlorophyll concentration and AVHRR SST: Validation results of Gujarat Coast, India. International Journal of Remote Sensing 24: 3691–3699.CrossRefGoogle Scholar
  23. Solanki, H. U., P. C. Mankodi, S. R. Nayak & V. S. Somvanshi, 2005. Evaluation of remote-sensing-based potential fishing zones (PFZs) forecast methodology. Continental Shelf Research 25: 2163–2173.Google Scholar
  24. Solanki, H. U., M. Raman, B. Kumari, R. M. Dwivedi & A. Narain, 1998c. Seasonal trends in the fishery resources off Gujarat: salient observations using NOAA-AVHRR. Indian Journal of Maine Sciences 27: 438–442.Google Scholar
  25. Stretta, J. M., 1991. Forecasting models for tuna fishery with Aerospatiale remote sensing. International Journal of Remote Sensing 12: 771–779.CrossRefGoogle Scholar
  26. Sugimoto, T. & H. Tameish, 1992. Warm core rings and their role on the fishing ground formation around Japan. Deep Sea Research 39: 183–201.Google Scholar
  27. Yamanaka, I., S. Ito, K. Niwa, R. Tanabe, Y. Yabuta & S. Chikuni, 1998. The fisheries forecasting system in Japan for coastal pelagic fish. FAO Fisheries Technical Paper 301: 372.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Himmatsinh U. Solanki
    • 1
  • Pradip C. Mankodi
    • 2
  • Rashmin M. Dwivedi
    • 1
  • Shailesh R. Nayak
    • 1
  1. 1.Marine Water Resources GroupSpace Applications Centre (ISRO)AhmedabadIndia
  2. 2.Faculty of ScienceMaharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations