, Volume 612, Issue 1, pp 49–70 | Cite as

A review of cephalopod–environment interactions in European Seas

  • Graham J. PierceEmail author
  • Vasilis D. Valavanis
  • Angel Guerra
  • Patricia Jereb
  • Lydia Orsi-Relini
  • Jose M. Bellido
  • Isidora Katara
  • Uwe Piatkowski
  • João Pereira
  • Eduardo Balguerias
  • Ignacio Sobrino
  • Eugenia Lefkaditou
  • Jianjun Wang
  • Marina Santurtun
  • Peter R. Boyle
  • Lee C. Hastie
  • Colin D. MacLeod
  • Jennifer M. Smith
  • Mafalda Viana
  • Angel F. González
  • Alain F. Zuur


Cephalopods are highly sensitive to environmental conditions and changes at a range of spatial and temporal scales. Relationships documented between cephalopod stock dynamics and environmental conditions are of two main types: those concerning the geographic distribution of abundance, for which the mechanism is often unknown, and those relating to biological processes such as egg survival, growth, recruitment and migration, where mechanisms are sometimes known and in a very few cases demonstrated by experimental evidence. Cephalopods seem to respond to environmental variation both ‘actively’ (e.g. migrating to areas with more favoured environmental conditions for feeding or spawning) and ‘passively’ (growth and survival vary according to conditions experienced, passive migration with prevailing currents). Environmental effects on early life stages can affect life history characteristics (growth and maturation rates) as well as distribution and abundance. Both large-scale atmospheric and oceanic processes and local environmental variation appear to play important roles in species–environment interactions. While oceanographic conditions are of particular significance for mobile pelagic species such as the ommastrephid squids, the less widely ranging demersal and benthic species may be more dependent on other physical habitat characteristics (e.g. substrate and bathymetry). Coastal species may be impacted by variations in water quality and salinity (related to rainfall and river flow). Gaps in current knowledge and future research priorities are discussed. Key research goals include linking distribution and abundance to environmental effects on biological processes, and using such knowledge to provide environmental indicators and to underpin fishery management.


Cephalopods Gulf Stream North Atlantic Oscillation Fisheries Ocean processes Ecology 



This work was funded by the European Commission. It was initiated through FP5 Concerted Action ‘CEPHSTOCK’ (QLRT-2001-00962) as part of WP3 (Fisheries-Environment Interactions) and concluded under the FP6 Scientific Support to Policies Action ‘EnviEFH’ (SSA 022466). GJP would also like to acknowledge support from the ANIMATE project (MEXC-CT-2006-042337).


  1. Agnew, D. J., J. R. Beddington & S. L. Hill, 2002. The potential use of environmental information to manage squid stocks. Canadian Journal of Fisheries and Aquatic Science 59: 1851–1857.Google Scholar
  2. Agnew, D. J., S. Hill & J. R. Beddington, 2000. Predicting the recruitment strength of an annual squid stock: Loligo gahi around the Falkland Islands. Canadian Journal of Fisheries and Aquatic Sciences 57: 2479–2487.Google Scholar
  3. Anderson, C. I. H. & P. G. Rodhouse, 2001. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fisheries Research 54: 133–143.Google Scholar
  4. Aristegui, J., X. A. Alvarez-Salgado, E. D. Barton, F. G. Figueiras, S. Hernandez-Leon, C. Roy & A. M. P. Santos, 2006. Oceanography and fisheries of the Canary Current/Iberian region of the eastern North Atlantic. In Robinson, A. R. & K. H. Brink (eds), The sea. Harvard University Press, Cambridge, MA: 877–931.Google Scholar
  5. Arkhipkin, A. I., P. Jereb & S. Ragonese, 2000. Growth and maturation in two successive seasonal groups of the short-finned squid Illex coindetii from the Strait of Sicily (central Mediterranean). ICES Journal of Marine Science 57: 31–41.Google Scholar
  6. Arkhipkin, A. I., V. V. Laptikhovsky, A. M. Sirota & R. Grzebielec, 2006. The role of the Falkland Current in the dispersal of the squid Loligo gahi along the Patagonian Shelf. Estuarine, Coastal and Shelf Science 67: 198–204.Google Scholar
  7. Arkhipkin, A. I. & D. A. J. Middleton, 2002. Inverse patterns in abundance of Illex argentinus and Loligo gahi in Falkland waters: possible interspecific competition between squid? Fisheries Research 59: 181–196.Google Scholar
  8. Arkhipkin, A. I., D. A. J. Middleton, A. M. Sirota & R. Grzebielec, 2004. The effect of Falkland Current inflows on offshore ontogenetic migrations of the squid Loligo gahi on the southern shelf of the Falkland Islands. Estuarine, Coastal and Shelf Science 60: 11–22.Google Scholar
  9. Arvanitidis, C., D. Koutsoubas, J.-P. Robin, J. Pereira, A. Moreno, M. Cunha, V. D. Valavanis & A. Eleftheriou, 2002. A comparison of the fishery biology of three Illex coindetii Verany, 1839 (Cephalopoda: Ommastrephidae) populations from the European Atlantic and Mediterranean waters. Bulletin of Marine Science 71: 129–146.Google Scholar
  10. Atzeni, A., A. Balzano & G. Lai, 1997. Sulle correnti del Golfo di Cagliari: dipendenza dalle correnti del Mediterraneo e simulazione numerica dei regimi stagionali. Quaderni di ricerca del Dipartimento di Ingegneria del Territorio. Sezione di Ingegneria Idraulica: 27–79.Google Scholar
  11. Augustyn, C. J., 1990. Biological studies on the Chokker squid Loligo vulgaris reynaudii (Cephalopoda; Myopsida) on spawning grounds off the south-east coast of South Africa. South African Journal of Marine Science 9: 11–26.Google Scholar
  12. Augustyn, C. J., 1991. The biomass and ecology of chokka squid Loligo vulgaris reynaudii off the west coast of South Africa. South African Journal of Zoology 26: 164–181.Google Scholar
  13. Augustyn, C. J., M. R. Lipinski, W. H. H. Sauer, M. J. Roberts & B. A. Mitchell-Innes, 1994. Chokka squid on the Agulhas Bank: life history and ecology. South African Journal of Marine Science 90: 143–153.Google Scholar
  14. Bakun, A. & J. Csirke, 1998. Environmental processes and recruitment variability. In Rodhouse, P. G., E. G. Dawe & R. K. O’Dor (eds), Squid Recruitment Dynamics. The Genus Illex as a Model. The Commercial Illex Species. Influences on Variability, Vol. 376. FAO Fisheries Technology Paper: 273.Google Scholar
  15. Balguerias, E., C. Hernandez-Gonzalez & C. Perales-Raya, 2002. On the identity of Octopus vulgaris Cuvier, 1797 stocks in the Saharan Bank (Northwest Africa) and their spatiotemporal variations in abundance in relation to some environmental factors. Bulletin of Marine Science 71: 147–163.Google Scholar
  16. Balguerias, E., M. E. Quintero & C. L. Hernandez-Gonzalez, 2000. The origin of the Saharan Bank cephalopod fishery. ICES Journal of Marine Science 57: 15–23.Google Scholar
  17. Barton, E., J. Aristegui, P. Tett & E. Navarro-Perez, 2004. Variability in the Canary Islands area of filament-eddy exchanges. Progress in Oceanography 62: 71–94.Google Scholar
  18. Bellido, J. M., 2002. Use of geographic information systems, spatial and environment-based models to study ecology and fishery of the veined squid (Loligo forbesi Steenstrup 1856) in Scottish waters. PhD Thesis. University of Aberdeen, United Kingdom: 183.Google Scholar
  19. Bellido, J. M., G. J. Pierce & J. Wang, 2001. Modelling intra-annual variation in abundance of squid Loligo forbesi in Scottish waters using generalized additive models. Fisheries Research 52: 23–39.Google Scholar
  20. Bettencourt, V. & A. Guerra, 1999. Carbon- and oxygen- isotope composition of the cuttlebone of Sepia officinalis: a tool for predicting ecological information? Marine Biology 133: 651–657.Google Scholar
  21. Boletzky, S. V., 1986. Reproductive strategies in cephalopods: variations and flexibility of life-history. Advances in Invertebrate Reproduction 4: 379–389.Google Scholar
  22. Boyle, P. R., 1990. Cephalopod biology in the fisheries context. Fisheries Research 8: 303–321.Google Scholar
  23. Boyle, P. R., G. J. Pierce & L. C. Hastie, 1995. Flexible reproductive strategies in the squid Loligo forbesi. Marine Biology 121: 501–508.Google Scholar
  24. Boyle, P. R. & P. G. Rodhouse, 2005. Cephalopods. Ecology and Fisheries, Blackwell Science Ltd, Oxford.Google Scholar
  25. Bravo de Laguna, J. & G. E. Balguerias, 1993. La pesqueria sahariana de cefalopodos: una breve revision. Boletin del Instituto Espanol de Oceanografia 9: 203–213.Google Scholar
  26. Caddy, J. F., 1983. The cephalopods: factors relevant to their population dynamics and to the assessment and management of stocks. In Caddy, J. F. (ed.), Advances in Assessment of World Cephalopod Resources, Vol. 231. FAO Fisheries Technical Paper, Rome: 416–449.Google Scholar
  27. Caddy, J. F. & P. G. Rodhouse, 1998. Cephalopod and groundfish landings: evidence for ecological change in global fisheries? Reviews in Fish Biology and Fisheries 8: 431–444.Google Scholar
  28. Challier, L., J. Royer, G. J. Pierce, N. Bailey, B. Roel & J. P. Robin, 2005. Environmental and stock effects on recruitment variability in the English Channel squid Loligo forbesi. Aquatic Living Resources 18: 353–360.Google Scholar
  29. Chen, C. S., G. J. Pierce, J. Wang, J. P. Robin, J. C. Poulard, J. Pereira, A. F. Zuur, P. R. Boyle, N. Bailey, D. J. Beare, P. Jereb, S. Ragonese, A. Mannini & L. Orsi-Relini, 2006. The apparent disappearance of Loligo forbesi from the south of its range in the 1990s: trends in Loligo spp. abundance in the northeast Atlantic and possible environmental influences. Fisheries Research 78: 44–54.Google Scholar
  30. Chen, X. J., X. H. Zhao & Y. Chen, 2007. Influence of El Nino/La Nina on the western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean. ICES Journal of Marine Science 64: 1152–1160.Google Scholar
  31. Clarke, M. R., N. MacLeod, H. P. Castello & M. C. Pinedo, 1980. Cephalopod remains from the stomach of a sperm whale stranded at Rio Grande do Sul in Brazil. Marine Biology 59: 235–239.Google Scholar
  32. Collins, M. A. & P. G. K. Rodhouse, 2006. Southern ocean cephalopods. Advances in Marine Biology 50: 191–265.PubMedGoogle Scholar
  33. Collins, M. A., C. Yau, A. Allcock & M. H. Thurston, 2001. Distribution of deep-water benthic and bentho-pelagic cephalopods from the north-east Atlantic. Journal of the Marine Biological Association of the UK 81: 105–117.Google Scholar
  34. Craig, S. & J. Overnell, 2003. Metals in squid, Loligo forbesi, adults, eggs and hatchlings. No evidence for a role for Cu- or Zn-metallothionein. Comparative Biochemistry and Physiology Part C 134: 311–317.PubMedGoogle Scholar
  35. Cuccu, D., P. Jereb, S. Ragonese, N. Giovannini, S. Colella & A. Cau, 2008. On the abundance and spatial distribution of Illex coindetii and Eledone moschata in the Sardinian Seas (central-western Mediterranean)—A preliminary and qualitative investigation with special attention to some environmental constraints. Bollettino Malacologico 54: 15–25.Google Scholar
  36. Cunha, M. M., A. Moreno & J. M. F. Pereira, 1995. Spatial and temporal occurrences of Loligo spp. in Portuguese waters. ICES CM 1995/K:33.Google Scholar
  37. Cushing, D. H., 1975. Marine Ecology and Fisheries. Cambridge University Press, Cambridge: 271.Google Scholar
  38. Dawe, E. G., E. B. Colbourne & K. F. Drinkwater, 2000. Environmental effects on recruitment of shorth-finned squid (Illex illecebrosus). ICES Journal of Marine Science 57: 1002–1013.Google Scholar
  39. Dawe, E. G., L. C. Hendrickson, E. B. Colbourne, M. A. Showell, D. D. Jones & D. A. Methven, 2001. Squids as potential indicators species of environmental or ecosystem change in the Northwest Atlantic Ocean. ICES CM 2001/K:07.Google Scholar
  40. De Alteris, J., L. Skrobe & C. Lipsky, 1998. Fish habitat: essential fish habitat and rehabilitation. American Fisheries Society Symposium Series 22: 224–237.Google Scholar
  41. De Heij, A. & R. P. Baayen, 2005. Seasonal distribution of cephalopod species living in the central and southern North Sea. Basteria 69: 91–119.Google Scholar
  42. Demarcq, H. & V. Faure, 2000. Coastal upwelling and associated retention indices derived from satellite SST. Application to Octopus vulgaris recruitment. Oceanologica Acta 23: 391–408.Google Scholar
  43. Domingues, P. M., V. Bettencourt & A. Guerra, 2006. Growth of Sepia officinalis in captivity and in nature. Vie et Milieu. Life and Environment 56: 109–120.Google Scholar
  44. Domingues, P. M., A. Sykes & J. P. Andrade, 2002. The effects of temperature in the life cycle of two consecutive generations of the cuttlefish Sepia officinalis L. cultured in the Algarve (South Portugal). Aquaculture International 10: 207–220.Google Scholar
  45. Dunn, M. R., 1999. Aspects of the stock dynamics and exploitation of cuttlefish, Sepia officinalis (Linnaeus, 1758), in the English Channel. Fisheries Research 40: 277–293.Google Scholar
  46. Erzini, K., 2005. Trends in NE Atlantic landings (southern Portugal): identifying the relative importance of fisheries and environmental variables. Fisheries Oceanography 14: 195–209.Google Scholar
  47. Faraj, A. & N. Bez, 2007. Spatial considerations for the Dakhla stock of Octopus vulgaris: indicators, patterns, and fisheries interactions. ICES Journal of Marine Science 64: 1820–1828.Google Scholar
  48. Fogarty, M. J., 1989. Forecasting yield and abundance of exploited invertebrates. In Caddy, J. F. (ed.), Marine Invertebrate Fisheries: Their Assessment and Management. Wiley: 701–724.Google Scholar
  49. Forsythe, J. W., 1993. A working hypothesis of how seasonal temperature change may impact the field growth of young cephalopods. In Okutani, T., R. K. O’Dor & T. Kubodera (eds), Recent Advances in Cephalopod Fisheries Biology. Tokai University Press, Tokyo: 133–143.Google Scholar
  50. Georgakarakos, S., J. Haralabus, V. D. Valavanis, C. Arvanitidis & D. Koutsoubas, 2002. Prediction of fishery exploitation stocks of Loliginid and Ommastrephid squids in Greek waters (Eastern Mediterranean) using uni- and multivariate time series analysis techniques. Bulletin of Marine Science 71: 269–288.Google Scholar
  51. Georgakarakos, S., D. Koutsoubas & V. D. Valavanis, 2006. Time series analysis and forecasting techniques applied on Loliginid and Ommastrephid landings in Greek waters. Fisheries Research 78: 55–71.Google Scholar
  52. Gomez-Munoz, V. M., 1990. A model to estimate catches from a short fishery statistics survey. Bulletin of Marine Science 46: 719–722.Google Scholar
  53. González, A. F., J. Otero, A. Guerra, R. Prego, F. J. Rocha & A. W. Dale, 2005. Temporal variation of cephalopod paralarvae in a wind-driven upwelling area (Ria of Vigo, NW Spain). Journal of Plankton Research 27: 271–277.Google Scholar
  54. González, A. F., P. Trathan, C. Yau & P. G. Rodhouse, 1997. Interactions between oceanography, ecology and fishery biology of ommastrephid squid Martialia hyadesi in the South Atlantic. Marine Ecology Progress Series 152: 205–215.Google Scholar
  55. González, M. & P. Sanchez, 2002. Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Scientia Marina 66: 199–208.Google Scholar
  56. Gowland, F. C., 2002. Developmental variability in loliginid squid (Loligo forbesi and Sepioteuthis australis). PhD Thesis, University of Aberdeen.Google Scholar
  57. Guerra, A., 1992. Mollusca, cephalopoda. In: Ramos, M. A., J. Alba, X. Bellés, J. Gosálbez, A. Guerra, E. Macpherson, F. Martín, J. Serrano & J. Templado (eds), Fauna Ibérica, Vol. 1. Museo Nacional de Ciencias Naturales, CSIC, Madrid: 327 pp.Google Scholar
  58. Guerra, A., 2004. Relaciones entre la oceanografia y los recursos marinos renovables. Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales 98: 77–88.Google Scholar
  59. Guerra, A., 2006a. Ecology of Sepia officinalis. Vie et Milieu. Life and Environment 56: 97–107.Google Scholar
  60. Guerra, A., 2006b. Estrategia evolutiva de los cefalopodos. Investigacion y Ciencia 355: 50–59.Google Scholar
  61. Guerra, A., A. F. González & F. Rocha, 2002. Appearance of the common paper nautilus Argonauta argo related to the increase of the sea surface temperature in the north-eastern Atlantic. Journal of Marine Biological Association of U.K. 82: 855–858.Google Scholar
  62. Guerra, A. & F. Rocha, 1994. The life history of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in Galician waters (NW Spain). Fisheries Research 21: 43–69.Google Scholar
  63. Guerra, A. & P. Sanchez, 1985. Comparacion de las pesquerias de cefalopodos de dos areas de afloramiento de la costa occidental africana. Simposio Internacional sobre Aflororamientos. Instituto de Investigaciones Pesqueras, Barcelona II: 749–760.Google Scholar
  64. Hastie, L. C., 1996. Estimation of trawl codend selectivity for squid (Loligo forbesi) based on Scottish research vessel survey data. ICES Journal of Marine Science 53: 741–744.Google Scholar
  65. Hastie, L. C., J. B. Joy, G. J. Pierce & C. Yau, 1994. Reproductive biology of Todaropsis eblanae (Cephalopoda: Ommastrephidae) in Scottish waters. Journal of the Marine Biological Association of the United Kingdom 74: 367–382.Google Scholar
  66. Hatfield, E. M. C., 2000. Do some like it hot? Temperature as a possible determinant of variability in the growth of the Patagonian squid, Loligo gahi (Cephalopoda: Loliginidae). Fisheries Research 47: 27–40.Google Scholar
  67. Holme, N. A., 1974. The biology of Loligo forbesi Steenstrup (Mollusca: Cephalopoda) in the Plymouth area. Journal of Marine Biological Association of the United Kingdom 54: 481–503.Google Scholar
  68. Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679.PubMedGoogle Scholar
  69. Jackson, G. D., 2004. Cephalopod growth: historical context and future directions. Marine and Freshwater Research 55: 327–330.Google Scholar
  70. Jereb, P., D. Cuccu, D. Giordano, P. Maiorano & S. Ragonese, 2005. Using historical series of trawl surveys data to investigate cephalopods: a new method of exploratory analysis. Biologia Marina Mediterranea 12: 526–530.Google Scholar
  71. Jereb, P., D. Massi, G. Norrito & F. Fiorentino, 2001. Preliminary observations of environmental effects on spatial distribution and abundance of Eledone cirrhosa and Illex coindetii in the Strait of Sicily (Central Mediterranean Sea). ICES CM 2001/K:34.Google Scholar
  72. Jereb, P. & C. F. E. Roper, 2005. Cephalopods of the World: An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Vol. 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fisheries Purposes, No 4, Vol. 1. FAO, Rome.Google Scholar
  73. Jones, P. D., T. Jonsson & D. Wheeler, 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and Southwest Iceland. International Journal of Climatolology 17: 1433–1450.Google Scholar
  74. Katara, I., J. Illian, G. J. Pierce, B. Scott & J. Wang, 2008. Atmospheric forcing on chlorophyll concentration in the Mediterranean. Hydrobiologia (this volume).Google Scholar
  75. Lafuente, J. G. & J. Ruiz, 2007. The Gulf of Cadiz pelagic ecosystem: a review. Progress in Oceanography 74: 228–251.Google Scholar
  76. Laptikhovsky, V., J. Pereira, A. Salman, A. Arkhipov & A. Costa, 2008. A habitat-dependence in cephalopod and pelagophil fish reproductive strategies in the Mediterranean Sea. Bollettino Malacologico (in press).Google Scholar
  77. Lefkaditou, E., P. Sanchez, A. Tsangridis & A. Adamidou, 1998a. A preliminary investigation on how meteorological changes may affect beach-seine catches of Loligo vulgaris in the Thracian Sea (Eastern Mediterranean). South African Journal of Marine Science 20: 453–461.Google Scholar
  78. Lefkaditou, E., A. Siapatis & C. Papaconstantinou, 1998b. Seasonal and spatial changes in the abundance and distribution of Eledone moschata (Cephalopoda: Octopoda), in the South Aegean Sea (Eastern Mediterranean). ICES CM 1998/M:44.Google Scholar
  79. Lefkaditou, E., A. Souplet, N. Peristeraki, M. Gonzalez, S. Kavadas, P. Vidoris, D. Cuccu & C. Papaconstantinou, 2000. Preliminary investigation of factors affecting the spatial distribution and abundance of Eledone cirrhosa (Cephalopoda: Octopoda) in the Mediterranean Sea. In Bertrand, J. A. & G. Relini (eds), Demersal Resources in the Mediterranean. Actes de Colloques 26, Ifremer, Plouzane: 208–218.Google Scholar
  80. Lefkaditou E., G. Verriopoulos & V. Valavanis, 2007. Research on cephalopod resources in Hellas. In Papaconstantinou, C., A. Zenetos, V. Vassilopoulou & G. Tserpes (eds), State of Hellenic Fisheries. Hellenic Centre for Marine Research, Athens: 440–451.Google Scholar
  81. Lloret, J., J. Lleonart, I. Sole & J. M. Fromentin, 2001. Fluctuations of landings and environmental conditions in the North-Western Mediterranean Sea. Fisheries Oceanography 10: 33–50.Google Scholar
  82. Lourenço, S. & J. Pereira, 2006. Estimating standardised landings per unit effort for an octopus mixed components fishery. Fisheries Research 78: 89–95.Google Scholar
  83. Mangold, K., 1983. Eledone moschata. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Species Accounts. Academic Press, New York: 387–400.Google Scholar
  84. Mazzola, S., A. Garcia & J. G. Lafuente, 2000. Distribution, Biology and Biomass Estimates of the Sicilian Channel Anchovy. Final Report. Commission of the European Communities. Directorate General for Fisheries (DG-XIV), Mimeo:152.Google Scholar
  85. Melzner, F., C. Bock & H.-O. Portner, 2006. Critical temperatures in the cephalopod Sepia officinalis investigated using in vivo 31P NMR spectroscopy. Journal of Experimental Biology 209: 891–906.PubMedGoogle Scholar
  86. Millot, C., 2005. Circulation in the Mediterranean Sea: evidences, databases and unanswered questions. Scientia marina 69: 5–21.Google Scholar
  87. Millot, C. & I. Taupier-Letage, 2004. Circulation in the Mediterranean Sea. The Handbook of Environmental Chemistry. The Natural Environment and the Biological Cycles 1: 1–30.Google Scholar
  88. Moreno, A., M. Azevedo, J. Pereira & G. J. Pierce, 2007. Growth strategies in the squid Loligo vulgaris from Portuguese waters. Marine Biology Research 3: 49–59.Google Scholar
  89. Moreno, A. & J. M. F. Pereira, 1998. Cephalopod paralarval distribution in Iberian Atlantic waters. ICES CM 1998/M:42.Google Scholar
  90. Moreno, A. & C. Sousa-Reis, 1995. Seasonal distribution of loliginid early young stages in the Portuguese continental shelf. ICES CM 1995/K:32.Google Scholar
  91. Mqoqi, M., M. R. Lipinski & A. G. V. Salvanes, 2007. The ecology of Sepia australis (Cephalopoda: Sepiidae) along the south coast of South Africa. ICES Journal of Marine Science 64: 945–955.Google Scholar
  92. O’Dor, R. K., 1992. Big squid in big currents. South African Journal of Marine Science 12: 225–235.Google Scholar
  93. Olyott, L. J. H., W. H. H. Sauer & A. J. Booth, 2006. Spatio-temporal patterns in maturation of the chokka squid (Loligo vulgaris reynaudii) off the coast of South Africa. ICES Journal of Marine Science 63: 1649–1664.Google Scholar
  94. Orsi Relini, L., A. Mannini, F. Fiorentino, G. Palandri & G. Relini, 2006. Biology and fishery of E. cirrhosa in the Ligurian Sea. Fisheries Research 78: 72–88.Google Scholar
  95. Otero, J., 2006. Ecologia del pulpo comun (Octopus vulgaris Cuvier, 1797) en un area de afloramiento costero (Galicia, NE Atlántico). PhD Thesis, University of Vigo, Spain.Google Scholar
  96. Otero, J., X. A. Alvarez-Salgado, A. F. Gonzalez, A. Miranda, S. B. Groom, J. M. Cabanas, G. Casas, B. Wheatley & A. Guerra, 2008. Bottom-up and top-down controls of common octopus (Octopus vulgaris) in a wind-driven upwelling ecosystem (Galicia, NE Atlantic). Marine Ecology Progress Series. doi: 10.3354/meps07437.
  97. Otero, J., A. F. Gonzalez, M. P. Sieiro & A. Guerra, 2007. Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fisheries Research 85: 122–129.Google Scholar
  98. Otero, J., F. Rocha, A. F. Gonzalez, J. Gracia & A. Guerra, 2005. Modelling artisanal coastal fisheries of Galicia (NW Spain) based on data obtained from fishers: the case of Octopus vulgaris. Scientia Marina 69: 577–585.Google Scholar
  99. Pascual, S., A. F. Gonzalez & A. Guerra, 2007. Parasite recruitment and oceanographic regime: evidence suggesting a relationship on a global scale. Biological Reviews 82: 257–263.PubMedGoogle Scholar
  100. Pecl, G. T., M. A. Steer & K. E. Hodgson, 2004. The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe Hypothesis. Marine and Freshwater Research 55: 387–394.Google Scholar
  101. Piatkowski, U., G. J. Pierce & M. Morais da Cunha, 2001. Impact of cephalopods in the food chain and their interaction with the environment and fisheries: an overview. Fisheries Research 52: 5–10.Google Scholar
  102. Piccioni, A., M. Gabriele, E. Salusti & E. Zambianchi, 1988. Wind-induced upwellings off the southern coast of Sicily. Oceanologica Acta 11: 309–314.Google Scholar
  103. Pierce, G. J., N. Bailey, Y. Stratoudakis & A. Newton, 1998. Distribution and abundance of the fished population of Loligo forbesi in Scottish waters: analysis of research cruise data. ICES Journal of Marine Science 55: 14–33.Google Scholar
  104. Pierce, G. J. & P. R. Boyle, 2003. Empirical modelling of interannual trends in abundance of squid (Loligo forbesi) in Scottish waters. Fisheries Research 59: 305–326.Google Scholar
  105. Pierce, G. J., P. R. Boyle, L. C. Hastie & M. B. Santos, 1994. Diets of squid Loligo forbesi and Loligo vulgaris in the northeast Atlantic. Fisheries Research 21: 149–164.Google Scholar
  106. Pierce, G. J. & A. Guerra, 1994. Stock assessment methods used for cephalopod fisheries. Fisheries Research 21: 255–286.Google Scholar
  107. Pierce, G. J., M. B. Santos, C. D. MacLeod, J. Wang, V. D. Valavanis & A. F. Zuur, 2006. Modelling environmental influences on squid life history, distribution, and abundance. Proceedings of the GLOBEC-CLIOTOP Working Group 3 and the Pelagic Fisheries Research Program (PFRP) Workshop. Nov. 14–17, 2006, University of Hawaii, Honolulu.Google Scholar
  108. Pierce, G. J., G. Stowasser, C. D. MacLeod, T. Valinassab, M. B. Santos & J. Wang 2005a. Mapping and modelling spawning habitat for the squid Loligo forbesi. In The Third International Symposium on GIS/Spatial Analyses in Fishery and Aquatic Sciences, 22–26, 2005, Shanghai, China.Google Scholar
  109. Pierce, G. J., J. Wang, J. M. Bellido, C. M. Waluda, J. P. Robin, V. Denis, D. Koutsoubas, V. D. Valavanis & P. R. Boyle, 1998. Relationships between cephalopod abundance and environmental conditions in the Northeast Atlantic and Mediterranean as revealed by GIS. ICES CM 1998/M:20.Google Scholar
  110. Pierce, G. J., J. Wang, X. Zheng, J. M. Bellido, P. R. Boyle, V. Denis & J.-P. Robin, 2001. A cephalopod fishery GIS for the northeast Atlantic: development and application. International Journal of Geographical Information Science 15: 763–784.Google Scholar
  111. Pierce, G. J., A. F. Zuur, J. M. Smith, M. B. Santos, N. Bailey, C. S. Chena & P. R. Boyle, 2005b. Interannual variation in life-cycle characteristics of the veined squid (Loligo forbesi) in Scottish (UK) waters. Aquatic Living Resources 18: 327–340.Google Scholar
  112. Portner, H. O., 1994. Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. In Portner, H. O., R. K. O’Dor & D. L. Macmillan (eds), Physiology of Cephalopod Molluscs: Lifestyle and Performance Adaptations. Gordon & Breach, Basel: 131–148.Google Scholar
  113. Quetglas, A., A. Carbonell & P. Sanchez, 2000. Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (North-Western Mediterranean): biological aspects of some deep-sea species. Estuarine, Coastal and Shelf Science 50: 739–749.Google Scholar
  114. Quetglas, A. & B. Morales-Nin, 2004. Age and growth of the Ommastrephid squid Todarodes sagittatus from the western Mediterranean Sea. Journal of the Marine Biological Association of the UK 84: 421–426.Google Scholar
  115. Ragonese, S., P. Jereb & E. Dawe, 2002. A comparison of growth performance across the squid genus Illex (Cephalopoda, Ommastrephidae) based on modelling weight-at-length and age data. Journal of Shellfish Research 21: 851–860.Google Scholar
  116. Rasero, M., 1994. Relationship between cephalopod abundance and upwelling: the case of Todaropsis eblanae (Cephalopoda: Ommastrephidae) in Galician waters (NW Spain). ICES CM 1994/K:40.Google Scholar
  117. Redfern, J. V., M. C. Ferguson, E. A. Becker, K. D. Hyrenbach, C. Good, J. Barlow, K. Kaschner, M. F. Baumgartner, K. A. Forney, L. T. Ballance, P. Fauchald, P. Halpin, T. Hamazaki, A. J. Pershing, S. S. Qian, A. Read, S. B. Reilly, L. F. Torres & F. Werner, 2006. Techniques for cetacean habitat modelling. Marine Ecology Progress Series 310: 271–295.Google Scholar
  118. Relvas, P., E. D. Barton, J. Dubert, P. B. Oliveira, A. Peliz, J. C. B. da Silva & A. M. P. Santos, 2007. Physical oceanography of the western Iberia ecosystem: Latest views and challenges. Progress in Oceanography 74: 149–173.Google Scholar
  119. Rio, M. H., P. M. Poulain, A. Pascual, E. Mauri, G. Larnicol & R. Santoleri, 2007. A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. Journal of Marine Systems 65: 484–508.Google Scholar
  120. Roberts, M. J. & W. H. H. Sauer, 1994. Environment: the key to understanding the South African chokka squid (Loligo vulgaris reynaudii) life-cycle and fishery? Antarctic Science 6: 249–258.Google Scholar
  121. Robin, J. P. & V. Denis, 1999. Squid stock fluctuations and water temperature: temporal analysis of English Channel Loliginidae. Journal of Applied Ecology 36: 101–110.Google Scholar
  122. Robinson, R. A., J. A. Learmonth, A. M. Hutson, C. D. Macleod, T. H. Sparks, D. I. Leech, G. J. Pierce, M. M. Rehfisch & H. Q. P. Crick, 2005. Climate Change and Migratory Species: A Report for DEFRA on Research Contract CR0302. BTO Research Report 414, British Trust for Ornithology.Google Scholar
  123. Rochet, M.-J., 2000. A comparative approach to life-history strategies and tactics among four orders of teleost fish. ICES Journal of Marine Science 57: 228–239.Google Scholar
  124. Rocha, F., J. Gracia, A. F. Gonzalez, C. M. Jardon & A. Guerra, 2004. Reliability of a model based on a short fishery statistics survey: application to the Northeast Atlantic monkfish fishery. ICES Journal of Marine Science 61: 25–34.Google Scholar
  125. Rocha, F., A. Guerra & F. Gonzalez, 2001. A review of reproductive strategies in cephalopods. Biological Reviews 76: 291–304.PubMedGoogle Scholar
  126. Rocha, F., A. Guerra, R. Prego & U. Piatkowski, 1999. Cephalopod paralarvae and upwelling conditions off Galician waters (NW Spain). Journal of Plankton Research 21: 21–33.Google Scholar
  127. Rocha, F., J. Otero, R. Outeiral, A. F. Gonzalez, J. Gracia & A. Guerra, 2006. Modelling small-scale coastal fisheries of Galicia (NW Spain) based on data obtained from fisheries: the case of Sepia officinalis. Scientia Marina 70: 593–601.Google Scholar
  128. Rodhouse, P. G., 2001. Managing and forecasting squid fisheries in variable environments. Fisheries Research 54: 3–8.Google Scholar
  129. Rodhouse, P. G., J. Barton, E. M. C. Hatfield & C. Symon, 1995. Illex argentinus: life cycle, population structure and fishery. ICES Marine Science Symposium 199: 425–432.Google Scholar
  130. Rodhouse, P. G., U. Piatkowski & C. C. Lu, 1994a. Southern ocean cephalopods: life cycles and populations. Antarctic Science 6: 135–290.Google Scholar
  131. Rodhouse, P. G., P. A. Prince, P. N. Trathan, E. M. C. Hatfield, J. L. Watkins, D. G. Bone, E. J. Murphy & M. G. White, 1996. Cephalopods and mesoscale oceanography at the Antarctic Polar Front: satellite tracked predators locate pelagic trophic interactions. Marine Ecology Progress Series 136: 37–50.Google Scholar
  132. Rodhouse, P. G., K. Robinson, S. B. Gajdatsy, H. I. Daly & M. J. S. Ashmore, 1994b. Growth, Age structure and Environmental history in the cephalopod Martialia hyadesi (Teuthoidea, Ommastrephidae) at the Antarctic Polar Frontal zone and on the Patagonian Shelf Edge. Antarctic Science 6: 259–267.Google Scholar
  133. Rodhouse, P. G., C. M. Waluda, E. Morales-Bojorquez & A. Hernandez-Herrera, 2006. Fishery biology of the Humboldt squid, Dosidicus gigas, in the Eastern Pacific Ocean. Fisheries Research 79: 13–15.Google Scholar
  134. Rowell, T. W., J. H. Young, J. C. Poulard & J. P. Robin, 1985. Changes in the distribution and biological characteristics of Illex illecebrosus on the Scotian shelf, 1980–83. NAFO Scientific Council Studies 9: 11–26.Google Scholar
  135. Royer, J., G. J. Pierce, E. Foucher & J.-P. Robin, 2006. The English Channel stock of Sepia officinalis: Modelling variability in abundance and impact of the fishery. Fisheries Research 78: 96–106.Google Scholar
  136. Sacau, M., G. J. Pierce, J. Wang, A. I. Arkhipkin, J. Portela, P. Brickle, M. B. Santos & X. Cardoso, 2005. The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic. Aquatic Living Resource 18: 361–372.Google Scholar
  137. Sakaguchi, H., T. Hamano & A. Nakazono, 1999. Occurrence of planktonic juveniles of Octopus vulgaris in eastern Iyo-Nada of the Seto Inland sea, Japan. Bulletin of the Japanese Society of Fisheries Oceanography 63: 181–187.Google Scholar
  138. Santurtun, M., Y. Sagarminaga, P. Lucio, I. Galparsoro, J. Quincoces & A. Iriondo, 2004. Interannual trends in catches of squid (Loligo spp.) in the Bay of Biscay (ICES Div. VIIIa, b, d) during 2000 in relation to oceanographic features. ICES CM 2004/CC.Google Scholar
  139. Sauer, W. H. H., W. S. Goschen & A. S. Koorts, 1991. A preliminary investigation of the effect of sea temperature fluctuations and wind direction on catches of Chokka squid Loligo vulgaris reynaudii off the Eastern Cape, South Africa. South African Journal of Marine Science 11: 467–473.Google Scholar
  140. Semmens, J. M., G. T. Pecl, B. M. Gillanders, C. M. Waluda, E. K. Shea, D. Jouffre, T. Ichii, K. Zumholz, O. N. Katugin, S. C. Leporati & P. W. Shaw, 2007. Approaches to resolving cephalopod movement and migration patterns. Reviews in Fish Biology and Fisheries 17: 401–423.Google Scholar
  141. Shaw, P. W., G. J. Pierce & P. R. Boyle, 1999. Subtle population structuring within a highly vagile marine invertebrate, the Veined Squid Loligo forbesi, demonstrated with microsatellite DNA markers. Molecular Ecology 8: 407–417.Google Scholar
  142. Silva, L., F. Ramos & I. Sobrino, 2004. Reproductive biology of Eledone moschata (Cephalopoda: Octopodidae) in the Gulf of Cádiz (south-western Spain, ICES Division IXa). Journal of the Marine Biological Association of the United Kingdom 84: 1221–1226.Google Scholar
  143. Simon, F., F. Rocha & A. Guerra, 1996. The small-scale squid hand-jig fishery off the northwestern Iberian Peninsula: application of a model based on a short survey of fishery statistics. Fisheries Research 25: 253–263.Google Scholar
  144. Sims, D. W., M. J. Genner, A. J. Southward & S. J. Hawkins, 2001. Timing of squid migration reflects North Atlantic climate variability. Proceedings of the Royal Society of London 268(1485): 2607–2611.Google Scholar
  145. Smith, J. M., G. J. Pierce, A. F. Zuur & P. R. Boyle, 2005. Seasonal patterns of investment in reproductive and somatic tissues in the squid Loligo forbesi. Aquatic Living Resources 18: 341–351.Google Scholar
  146. Sobrino, I., L. Silva, J. M. Bellido & F. Ramos, 2002. Rainfall, river discharges and sea temperature as factors affecting abundance of two coastal benthic cephalopod species in the Gulf of Cadiz. Bulletin of Marine Science 71: 851–866.Google Scholar
  147. Solow, A. R., 2001. Observation error and the detection of delayed density dependence. Ecology 82: 3263–3264.Google Scholar
  148. Valavanis, V. D., S. Georgakarakos, A. Kapantagakis, A. Palialexis & I. Katara, 2004. A GIS environmental modelling approach to essential fish habitat designation. Ecological Modelling 178: 417–427.Google Scholar
  149. Valavanis, V. D., S. Georgakarakos, D. Koutsoubas, C. Arvanitidis & J. Haralabous, 2002. Development of a marine information system for Cephalopod fisheries in the Greek Seas (Eastern Mediterranean). Bulletin of Marine Science 71: 867–882.Google Scholar
  150. Valavanis, V. D., I. Katara & A. Palialexis, 2005. Marine GIS: identification of mesoscale oceanic thermal fronts. International Journal of Geographical Information Science 19: 1131–1147.Google Scholar
  151. Valavanis, V. D., G. J. Pierce, A. F. Zuur, A. Palialexis, A. Saveliev, I. Katara & J. Wang, 2008. Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. Hydrobiologia (this volume).Google Scholar
  152. Van Aken, H. M. & G. Becker, 1996. Hydrography and through-flow in the north-eastern North Atlantic Ocean: the NANSEN project. Progress in Oceanography 38: 297–346.Google Scholar
  153. Vecchione, M., 1999. Extraordinary abundance of squid paralarvae in the tropical eastern Pacific Ocean during El Niño of 1987. Fishery Bulletin 97: 1025–1030.Google Scholar
  154. Villa, H., J. Quintela, M. L. Coelho, J. D. Icely & J. P. Andrade, 1997. Phytoplankton biomass and zooplankton abundance on the south coast of Portugal (Sagres), with special reference to spawning of Loligo vulgaris. Scientia Marina 61: 123–129.Google Scholar
  155. Villanueva, R., 1995. Experimental rearing and growth of plancktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Sciences 52: 2639–2650.Google Scholar
  156. Villanueva, R., 2000. Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Marine Biology 136: 449–460.Google Scholar
  157. Villanueva, R., A. Arkhipkin, P. Jereb, E. Lefkaditou, M. R. Lipinski, C. Perales-Raya, J. Riba & F. Rocha, 2003. Embryonic life of the Loliginid squid Loligo vulgaris: comparison between statoliths of Atlantic and Mediterranean populations. Marine Ecology Progress Series 253: 197–208.Google Scholar
  158. Waluda, C. M., H. J. Griffiths & P. G. Rodhouse, 2008. Remotely sensed spatial dynamics of the Illex argentinus fishery Southwest Atlantic. Fisheries Research 91: 196–202.Google Scholar
  159. Waluda, C. M. & G. J. Pierce, 1998. Temporal and spatial patterns in the distribution of squid Loligo spp. in United Kingdom waters. South African Journal of Marine Science 20: 323–336.Google Scholar
  160. Waluda, C. M. & P. G. Rodhouse, 2006. Remotely sensed mesoscale oceanography of the Central Eastern Pacific and recruitment variability in Dosidicus gigas. Marine Ecology Progress Series 310: 25–32.Google Scholar
  161. Waluda, C. M, P. G. Rodhouse, G. P. Podestá, P. N. Trathan & G. J. Pierce. 2001a. Oceanography of Illex argentinus (Cephalopoda: Ommastrephidae) hatching and influences on recruitment variability. Marine Biology 139: 671–679.Google Scholar
  162. Waluda, C. M., P. G. Rodhouse, P. N. Trathan & G. J. Pierce, 2001b. Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South Atlantic. Fisheries Oceanography 10: 207–216.Google Scholar
  163. Waluda, C. M., P. N. Trathan, C. D. Elvidge, V. R. Hobson & P. G. Rodhouse, 2002. Throwing light on straddling stocks of Illex argentinus: assessing fishing intensity with satellite imagery. Canadian Journal of Fisheries and Aquatic Science 59: 592–596.Google Scholar
  164. Waluda, C. M., P. N. Trathan & P. G. Rodhouse, 1999. Influence of oceanographic variability on recruitment in the Illex argentinus (Cephalopoda: Ommastrephidae) fishery in the South Atlantic. Marine Ecology Progress Series 183: 159–167.Google Scholar
  165. Waluda, C. M., C. Yamashiro & P. G. Rodhouse, 2006. Influence of the ENSO cycle on the light-fishery for Dosidicus gigas in the Peru Current: an analysis of remotely sensed data. Fisheries Research 79: 56–63.Google Scholar
  166. Wang, J., G. J. Pierce, P. R. Boyle, V. Denis, J. P. Robin & J. M. Bellido, 2003. Spatial and temporal patterns of cuttlefish (Sepia officinalis) abundance and environmental influences: a case study using trawl fishery data in French Atlantic coastal, English Channel, and adjacent waters. ICES Journal of Marine Science 60: 1149–1158.Google Scholar
  167. Wang, J., G. J. Pierce, M. B. Santos & P. R. Boyle, 2004. Integration of GIS, remote sensing and statistical technologies for analysing and modelling cephalopod resources dynamics in the Northeast Atlantic waters. Littoral 2004, Seventh International Conference Delivering Sustainable Coasts: Connecting Science and Policy. Sep. 20–22, 2004. Aberdeen, Scotland, UK.Google Scholar
  168. Young, I. A., G. J. Pierce, J. Murphy, H. I. Daly & N. Bailey, 2006a. Application of the Gomez- Muñoz model to estimate catch and effort in squid fisheries in Scotland. Fisheries Research 78: 26–38.Google Scholar
  169. Young, I. A. G., G. J. Pierce, G. Stowasser, M. B. Santos, J. Wang, P. R. Boyle, P. W. Shaw, N. Bailey, I. Tuck & M. A. Collins, 2006b. The Moray Firth directed squid fishery. Fisheries Research 78: 39-43.Google Scholar
  170. Zuur, A. F. & G. J. Pierce, 2004. Common trends in northeast Atlantic squid time series. Journal of Sea Research 52: 57–72.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Graham J. Pierce
    • 1
    • 2
    Email author
  • Vasilis D. Valavanis
    • 3
  • Angel Guerra
    • 4
  • Patricia Jereb
    • 5
  • Lydia Orsi-Relini
    • 6
  • Jose M. Bellido
    • 7
  • Isidora Katara
    • 2
  • Uwe Piatkowski
    • 8
  • João Pereira
    • 9
  • Eduardo Balguerias
    • 10
  • Ignacio Sobrino
    • 11
  • Eugenia Lefkaditou
    • 12
  • Jianjun Wang
    • 2
  • Marina Santurtun
    • 13
  • Peter R. Boyle
    • 2
  • Lee C. Hastie
    • 2
  • Colin D. MacLeod
    • 2
  • Jennifer M. Smith
    • 2
  • Mafalda Viana
    • 2
  • Angel F. González
    • 4
  • Alain F. Zuur
    • 14
  1. 1.Centro Oceanográfico de VigoInstituto Español de OceanografíaVigoSpain
  2. 2.School of Biological Sciences (Zoology)University of AberdeenAberdeenUK
  3. 3.Marine GIS Laboratory, Institute of Marine Biological ResourcesHellenic Center for Marine ResearchHeraklion CreteGreece
  4. 4.ECOBIOMARInstituto de Investigaciones Marinas (CSIC)VigoSpain
  5. 5.Istituto Centrale per la Ricerca Scientifica e Tecnologica Applicata al MareRomeItaly
  6. 6.Dipartimento per lo studio del Territorio e delle sue RisorseGenovaItaly
  7. 7.Centro Oceanográfico de MurciaInstituto Español de OceanografíaMurciaSpain
  8. 8.Leibniz-Institut fur Meereswissenschaften an der Universitat KielKielGermany
  9. 9.Instituto de Investigaçao das Pescas e do MarLisbonPortugal
  10. 10.Centro Oceanografico de CanariasInstituto Español de OceanografiaSanta Cruz de TenerifeSpain
  11. 11.Unidad de Cádiz, Instituto Español de OceanografíaCampus Universitario de Puerto Real, Institutos de Investigación––CACYTMARPuerto RealSpain
  12. 12.Institute of Marine Biological ResourcesHellenic Centre for Marine ResearchHelliniko, AthensGreece
  13. 13.Department of Fisheries ResourcesAZTI FoundationSukarrietaSpain
  14. 14.Highland Statistics LtdNewburghUK

Personalised recommendations