, Volume 613, Issue 1, pp 97–107 | Cite as

Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance

  • Daniel Baumgärtner
  • Martin Mörtl
  • Karl-Otto RothhauptEmail author


In a 2-year field study, abundance, biomass and community structure of benthic macroinvertebrates and their seasonal dynamics were assessed along the depth gradient in the stony littoral zone of Lake Constance, Central Europe. The macroinvertebrate community patterns differed significantly between the depth zones, partly because of species turnover, but mostly as a result of different dominance structures. These distinct differences should be considered when designing surveys of benthic invertebrates also for applied purposes, since sources of variation should be kept small and particularly on hard substrates, extensive efforts are required to obtain sufficient data for a powerful statistical analysis. A large seasonal variability in the macroinvertebrate communities of the eulittoral zone indicates a strong influence of physical disturbances, particularly of water-level fluctuations. The community pattern of the drift line samples was influenced by the previous development of the water level. The cumulated water-level fluctuations and their net tendency accounted for three quarters of the variation in a PCA. Since Lake Constance is the only large pre-alpine lake whose water level is not extensively regulated, the uniqueness of the littoral community should have implications for nature conservation measures.


Benthos Vertical gradient Ordination Dreissena polymorpha 



We thank C. Fiek, the members of the scientific diving group of the Limnological Institute of the University of Konstanz (P. Fischer, O. Walenciak, T. Jankowski, M. Wolf, E. Gross and K. Pohlmann), and H. Goldschmidt, S. Röck, C. Kienle, M. Korn, and C. Danzer for assistance in the field and in the laboratory. Many thanks to Karen Brune for editing the English and to Eva Leu and Karl-Matthias Wantzen for comments on an earlier version of the manuscript. This study was supported by the DFG within the collaborative research centre 454 “Lake Constance Littoral”.


  1. Bailey, R. C., K. E. Day, R. H. Norris & T. B. Reynoldson, 1995. Macroinvertebrate community structure and sediment bioassay results from nearshore areas of North American Great Lakes. Journal of Great Lakes Research 21: 42–52.Google Scholar
  2. Baumgärtner, D., 2004. Principles of Macroinvertebrate Community Structure in the Littoral Zone of Lake Constance. Verlag Regionalkultur, Heidelberg.Google Scholar
  3. Baumgärtner, D. & K. O. Rothhaupt, 2003. Predictive length-dry mass regressions for freshwater invertebrates in a pre-alpine lake littoral. International Review of Hydrobiology 88: 453–463.CrossRefGoogle Scholar
  4. Brodersen, K. P., P. C. Dall & C. Lindegaard, 1998. The fauna in the upper stony littoral of Danish lakes: macroinvertebrates as trophic indicators. Freshwater Biology 39: 577–592.CrossRefGoogle Scholar
  5. Chapman, M. G. & A. J. Underwood, 1999. Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Marine Ecology Progress Series 180: 257–265.CrossRefGoogle Scholar
  6. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  7. Clarke, K. R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.CrossRefGoogle Scholar
  8. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series 46: 213–226.CrossRefGoogle Scholar
  9. Cobb, S. E. & M. C. Watzin, 1998. Trophic interactions between yellow perch (Perca flavescens) and their benthic prey in a littoral zone community. Canadian Journal of Fisheries and Aquatic Sciences 55: 28–36.CrossRefGoogle Scholar
  10. Connell, J. H., 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42: 710–723.CrossRefGoogle Scholar
  11. Dall, P. C., C. Lindegaard, E. Jonsson, G. Jonsson & P. M. Jonsson, 1984. Invertebrate communities and their environment in the exposed littoral zone of Lake Esrom, Denmark. Archiv für Hydrobiologie Supplement 69: 477–524.Google Scholar
  12. Death, R. G., 1995. Spatial patterns in benthic invertebrate community structure: products of habitat stability or are they habitat specific? Freshwater Biology 33: 455–467.CrossRefGoogle Scholar
  13. Diehl, S., 1992. Fish predation an benthic community structure—the role of omnivory and habitat complexity. Ecology 73: 1646–1661.CrossRefGoogle Scholar
  14. Ehrenberg, H., 1957. Die Steinfauna der Brandungsufer ostholsteinischer Seen. Archiv für Hydrobiologie 53: 87–159.Google Scholar
  15. Fischer, P. & R. Eckmann, 1997. Spatial distribution of littoral fish species in a large European lake, Lake Constance, Germany. Archiv für Hydrobiologie 140: 91–116.Google Scholar
  16. Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.CrossRefGoogle Scholar
  17. Harrison, S. S. C. & A. G. Hildrew, 1998a. Patterns in the epilithic community of a lake littoral. Freshwater Biology 39: 477–492.CrossRefGoogle Scholar
  18. Harrison, S. S. C. & A. G. Hildrew, 1998b. Distribution dynamics of epilithic insects in a lake littoral. Archiv für Hydrobiologie: 143: 275–293.Google Scholar
  19. Harrison, S. S. C. & A. G. Hildrew, 2001. Epilithic communities and habitat heterogeneity in a lake littoral. Journal of Animal Ecology 70: 692–707.CrossRefGoogle Scholar
  20. Hayne, D. W. & R. C. Ball, 1956. Benthic productivity as influenced by fish predation. Limnology and Oceanography 1: 162–175.Google Scholar
  21. Hofmann, H., A. Lorke & F. Peeters, 2008. Temporal scales of water level fluctuations in lakes and their ecological implications. Hydrobiologia. doi: 10.1007/s10750-008-9474-1.
  22. Internationale Gewässerschutzkommission für den Bodensee (IGKB), 1994. Limnologischer Zustand des Bodensees. Jahresbericht der Internationalen Gewässerschutzkommission Bodensee 9.Google Scholar
  23. Jackson, D. A. & H. H. Harvey, 1993. Fish and benthic invertebrates: community concordance and community-environment relationships. Canadian Journal of Fisheries and Aquatic Sciences 50: 2641–2651.CrossRefGoogle Scholar
  24. Joehnk, K. D., D. Straile & W. Ostendorp, 2004. Water level variability and trends in Lake Constance in the light of the 1999 centennial flood. Limnologica 34: 15–21.Google Scholar
  25. Johnson, D. M., T. H. Martin, P. H. Crowley & L. B. Crowder, 1996. Link strength in lake littoral food webs: net effects of small sunfish and larval dragonflies. Journal of the North American Benthological Society 15: 271–288.CrossRefGoogle Scholar
  26. Johnson, R. K., 1998. Spatiotemporal variability of temperate lake macroinvertebrate communities: detection of impact. Ecological Applications 8: 61–70.CrossRefGoogle Scholar
  27. Johnson, R. K. & W. Goedkoop, 2002. Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biology 47: 1840–1854.CrossRefGoogle Scholar
  28. Kruskal, J. B. & M. Wish, 1978. Multidimensional Scaling. Sage Publications, Beverly Hills, CA.Google Scholar
  29. Macan, T. T., 1966. The influence of predation on the fauna of a moorland fishpond. Archiv für Hydrobiologie 61: 432–452.Google Scholar
  30. Morin, P. J., 1999. Community Ecology. Blackwell Science.Google Scholar
  31. Muckle, R., 1942. Beiträge zur Kenntnis der Uferfauna des Bodensees. Beiträge zur naturkundlichen Forschung im Oberrheingebiet 7: 1–109.Google Scholar
  32. Quinn, G. P., P. S. Lake & E. S. G. Schreiber, 1998. A comparative study of colonization by benthos in a lake and its outflowing stream. Freshwater Biology 39: 623–635.CrossRefGoogle Scholar
  33. Reid, R. A., K. M. Somers & S. M. David, 1995. Spatial and temporal variation in littoral-zone benthic invertebrates from three south-central Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 1406–1420.CrossRefGoogle Scholar
  34. Siessegger, B., 1969. Vorkommen und Verbreitung von Dreissena polymorpha Pallas im Bodensee. Wasser-Abwasser 110: 814–815.Google Scholar
  35. Tolonen, K. T., H. Hämäläinen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv für Hydrobiologie 152: 39–67.Google Scholar
  36. Toomey, M. B., D. McCabe & J. E. Marsden, 2002. Factors affecting the movement of adult zebra mussels (Dreissena polymorpha). Journal of the North American Benthological Society 21: 468–475.CrossRefGoogle Scholar
  37. Wacker, A. & E. von Elert, 2003. Settlement pattern of the zebra mussel, Dreissena polymorpha, as a function of depth in Lake Constance. Archiv für Hydrobiologie 58: 289–301.CrossRefGoogle Scholar
  38. Werner, S., M. Mörtl, H. -G. Bauer & K. -O. Rothhaupt, 2005. Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.CrossRefGoogle Scholar
  39. Wesenberg-Lund, C., 1908. Die littoralen Tiergesellschaften unserer größerer Seen. Internationale Revue der Gesamten Hydrobiologie 1: 574–609.CrossRefGoogle Scholar
  40. Winnell, M. H. & D. J. Jude, 1987. Benthic community structure and composition among rocky habitats in the Great Lakes and Keuka Lake, New York, USA, Canada. Journal of Great Lakes Research 13: 3–17.CrossRefGoogle Scholar
  41. Wong, A. H. K., D. D. Williams, D. J. McQueen, E. Demers & C. W. Ramcharan, 1998. Macroinvertebrate abundance in two lakes with contrasting fish communities. Archiv für Hydrobiologie 141: 283–302.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Daniel Baumgärtner
    • 1
  • Martin Mörtl
    • 2
  • Karl-Otto Rothhaupt
    • 2
    Email author
  1. 1.Department for Environment, Regional CouncilKarlsruheGermany
  2. 2.Department of Biology, Limnological InstituteUniversity of KonstanzKonstanzGermany

Personalised recommendations