, Volume 613, Issue 1, pp 71–83 | Cite as

Patterns, origin and possible effects of sediment pollution in a Mediterranean lake

  • Nikolaos SkoulikidisEmail author
  • Helen Kaberi
  • Dimitrios Sakellariou


Vegoritis is a large, deep, mesotrophic, karstic lake in NW Greece, located in Ptolemais basin. Dramatic lowering of the lake’s level has occurred during the last half century due to human pressures. The Ptolemais Basin and the lake itself are subjected to serious human pressures. Pollutants are carried into the lake through both, the atmosphere and surface runoff. In order to identify the levels, and assess the origin of heavy metals in surface lake sediments, 24 samples were collected and analyzed for their grain size, as well as for their mineral, organic matter, major element and heavy metal content. The origin of heavy metals has been attributed to specific geogenic and anthropogenic sources. Despite the anthropogenic disturbance, the levels of micropollutants were low, possibly due to the low retention time of lake water and the recent increase of sedimentation rates. Only Cr, Ni, Co As, and Ba were present in relatively high concentrations. Ba is derived from the erosion of acid silicate rocks, Cr primarily from mafic rocks and secondarily from pollution, whereas for Ni and Co the opposite is true, while As is primarily attributed to fly ash deposition. The lowering of the lakes’ water level exposes sediments, which are then being oxidized. Mobilization of As and Cr could impair humans’ and ecosystems’ health.


Lake Vegoritis Sediments Heavy metals Fly ash Toxicity 

Supplementary material


  1. Antonopoulos, V. Z. & S. K. Gianniou, 2003. Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecological Modelling 160: 39–53.CrossRefGoogle Scholar
  2. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  3. Bartlett, R. J., 1991. Cromium cycling in soil and water: links, gaps and methods. Environmental Health Perspectives 92: 31–34.CrossRefGoogle Scholar
  4. Calevro, F., S. Campani, M. Ragghianti, S. Bucci & G. Mancino, 1998. Tests of toxicity and teratogenicity in biphasic vertebrates treated with heavy metals (Cr3+, Al3+, Cd2+). Chemosphere 37: 3011–3017.PubMedCrossRefGoogle Scholar
  5. Chen, C. J. & L. J. Linn, 1994. Human carcinogeneicity and athirogenicity induced by chronic exposure to inorganic arsenic. In Nriagu, J. O. (ed.), Arsenic in the environment, Part II: human health and ecosystem effects. Wiley & Sons, Inc., New York: 109–131.Google Scholar
  6. Diamandithis, G.Ch., 1984. Seasonal variations of primary productivity and biomass in Lake Vegoritis. Geotechnica 4: 93–107. (in Greek).Google Scholar
  7. Diamandithis, G.Ch. & B. Z. Antonopoulos, 1984. Distribution of nitrogen, total phosphorus and some other qualitative variables in Lake Vegoritis. Geotechnica 6: 37–47. (in Greek).Google Scholar
  8. Dirilgen, N., 1998. Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemna minor. Chemosphere 37: 771–783.CrossRefGoogle Scholar
  9. DVWK (Deutsche Verband für Wasserwirtschaft und Kulturbau e.V.), 1998. Hydrogeochemische Stoffsysteme. Heft 117, Teil II.Google Scholar
  10. Eary, L. E. & D. Rai, 1987. Kinetics of Cr(III) oxidation by manganese dioxide. Environmental Science & Technology 21: 1187–1193.CrossRefGoogle Scholar
  11. Εikmann, Th. & A. Kloke, 1993. Nutzungs- und schutzbezogene Orientierungswerte für (Schad-) Stoffe in Boeden–Eikmann–Kloke Werte. 2. Überarbeitete und erweiterte Fassung. Nutzungs- und schutzbezogene. Orientierungswerte 3590: 1–26.Google Scholar
  12. Faure, G., 1991. Inorganic Chemistry – A Comprehensive Textbook for Geology Students. Macmillan Publishing Company, New York.Google Scholar
  13. Förstner, U. & G. T. W. Wittmann, 1981. Metal Pollution in the Aquatic Environment. Springer, Berlin, Heidelberg, New York.Google Scholar
  14. Fotis, G., S. Kilikidis & A. Kamarianos, 1984. Study of the pollution and productivity of Lake Vegoritis. Geotechnica 3: 74–79. (in Greek).Google Scholar
  15. Fytianos, K., S. Bovolenta & Η. Muntau, 1994. Assessment of metal mobility from sediments of lake Vegoritis. In Varnavas, S. P. (ed.), Environmental Contamination 6th International Conference, Delphi, Edinburgh, 343 pp.Google Scholar
  16. Fytianos, K. & B. Tsaniklidi, 1998. Leachability of heavy metals in Greek fly ash from coal combustion. Environment International 24: 477–486.CrossRefGoogle Scholar
  17. Gerouki, F., A. H. Foskolos, M. Dimitroula & E. Vasileiadis, 1997. Environmental impacts from the trace metals of fly ash coming from the burning of lignite in the electric stations of the greater area of Ptolemais – first results. Technical time reports, lignite and other solid fuels of our country: present status and potentials (2nd part), 6: 128–136.Google Scholar
  18. Hem, J. D., 1985. Study and interpretation of the chemical characteristics of natural waters. US Geological Survey Water Supply Paper 1473, 2nd edn.Google Scholar
  19. Henkin, R. I., 1984. Zink. In Merian, E. (ed.), Metalle in der Umwelt. Verlag Chemie, Weinheim: 597–630.Google Scholar
  20. Horn, M. K. & J. A. S. Adams, 1966. Computer-derived geochemical balance and element abundances. Geochimica et Cosmochimica Acta 30: 279–298.CrossRefGoogle Scholar
  21. IARC (International Agency for Research on Cancer), 1987. Monographs on the evaluation of carcinogenic risks of chemicals to humans. Supplement F. Overall Evaluation of Carcinogenicity. World Health Organization, Lyon, France: 29–57.Google Scholar
  22. Kagey, B. T. & B. G. Wixson, 1983. Health implications of coal development. In Thornton, I. (ed.), Applied Environmental Geochemistry. Academic Press, London: 463–480.Google Scholar
  23. Katsanos, A. A., N. Panayotakis, M. Tzoumezi, E. Papadopoulou-Mourkidou & G. A. Mourkides, 1987. Elemental analysis of water and sediments by external beam PIXE Part2. Industrial zone of ptolemais, Greece. Chemistry and Ecology 3: 75–100.CrossRefGoogle Scholar
  24. Katz, S. A. & H. Salem, 1994. The Biological and Environmental Chemistry of Chromium. VCH Publishers Inc., New York.Google Scholar
  25. Luh, M.-D., R. A. Baker & D. E. Henley, 1973. Arsenic analysis and toxicity – a review. The Science of the Total Environment 2: 1–12.PubMedCrossRefGoogle Scholar
  26. Maltby, E., 1992. Soil and wetland functions. In Gerakis, P. A. (ed.), Conservation and Management of Greek Wetlands. The IUCN Wetlands Programme: 9–60.Google Scholar
  27. Masscheleyn, P. H., J. H. Pardue, R. D. DeLanue & J. W. H. Patrick, 1992. Chromium redox chemistry in a lower Mississippi Valley bottomland, hardwood wetland. Environmental Science & Technology 26: 1217–1226.CrossRefGoogle Scholar
  28. Moore, J. N., W. H. Ficklin & C. Johns, 1988. Partitioning of arsenic and metals in reducing sulfidic sediments. Environmental Science & Technology 22: 432–437.CrossRefGoogle Scholar
  29. Morton, W. E. & D. A. Dunnette, 1994. Health effects of environmental arsenic. In Nriagu, J. O. (ed.), Arsenic in the Environment, Part II. Human Health and Ecosystem Effects. Wiley & Sons Inc., New York: 17–34.Google Scholar
  30. Nicholas, D. R., S. Ramamoorthy, V. Palace, S. Spring, J. N. Moore & F. Rosenzweig, 2003. Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Bioremediation 14: 123–137.Google Scholar
  31. Nikolaidis, N. P., Th. Koussouris, G. Fotis & E. Papachristou, 1985. Trophic status assessment of Lake Vegoritida, Greece. ISEM Journal 7: 11–25.Google Scholar
  32. Nikolaidis, N. P., G. M. Dobbs, J. Chen & J. A. Lackovic, 2004. Arsenic mobility in contaminated lake sediments. Environmental Pollution 129: 479–487.PubMedCrossRefGoogle Scholar
  33. Papakonstantinou, A., I. Meladiotis & C. Demiris, 1989. Karsthydrologische Untersuchungen in den südoestlichen Randbereichen des Amyndeon-Braunkohlen-beckens, Griechenland. Braunkohle 41: 44–50.Google Scholar
  34. Pavlides, S. B. & D. Moundrakis, 1987. Extensional tectonics of northwestern Macedonia, Greece, since the late Miocene. Journal of Structural Geology 9: 385–392.CrossRefGoogle Scholar
  35. Radakovitch, O., 1995. Étude du transfert et du dépôt du matériel particulaire par le 210Po et le 210Pb. Application aux marges continentales du Golfe de Gascogne (NE Atlantique) et du Golfe du Lion (NW Méditerranée). Ph.D. Thesis, University of Perpignan.Google Scholar
  36. Salbu, B. & E. Steiness, 1995. Trace Elements in Natural Waters. CRC Press, Boca Raton, Ann Arbor, London, Tokyo.Google Scholar
  37. Sakellariou, D., G. Rousakis, Ch. Kranis, E. Kamberi, P. Georgiou & N. Skoulikidis, 2001. Neotectonic movements and water level fluctuations of Lake Vegoritis during the Upper Quaternary. Bulletin of the Greek Geological Society Greece ΧΧΧΙV: 207–216. (in Greek).Google Scholar
  38. Salomons, W. & U. Förstner, 1984. Metals in the Hydrosphere. Springer, Berlin, Heidelberg, New York, Tokio.Google Scholar
  39. Samara, K., 2005. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece. Atmospheric Environment 39: 6430–6443.CrossRefGoogle Scholar
  40. Sanchez-Cabesa, J. A., P. Masque & I. Ani-Ragolta, 1998. 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. Journal of Radioactivity and Nuclear Chemistry 227: 19–22.CrossRefGoogle Scholar
  41. Shanker, A. K., C. Cervantes, H. Loza-Tevera & S. Avudainayagam, 2005. Chromium toxicity in plants. Envitonmental International 31: 739–753.CrossRefGoogle Scholar
  42. Skoulikidis, N., 2001a. Environmental state of the bottom of Vegoritis lake, Northern Greece. In Skoulikidis, N., G. Rousakis, D. Sakellariou & P. Georgiou (eds), Investigation of the Morphological and Geophysical Structure and Environmental State of the Bottom of Vegoritis Lake, Northern Greece. Final Report, HCMR.Google Scholar
  43. Skoulikidis, Ν., 2001b. Levels and possible origin of heavy metals in the sediments of Lake Vegoritis. Bulletin of the Greek Geological Society ΧΧΧΙV: 1123–1130. (in Greek).Google Scholar
  44. SRC (Syracuse Research Corporation), 1993. Toxicological profile for chromium. U.S. Dept. Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Contract No. 205–88–0608.Google Scholar
  45. Stamos, Α., 1996. Lake Vegoritis: Basic hydrogeologic – hydrologic characteristics of the lake and the adjacent area. Institute of Geological & Mineral Research, Kozani, Greece (in Greek – unpublished report).Google Scholar
  46. State of Connecticut Regulation, 1996. Remediation standard. State of Connecticut. Department of Environmental Protection.Google Scholar
  47. Ure, A. M., & M. L. Berrow, 1982. The chemical constituents of soils. In Bowen, H. J. M. (ed.), Environmental Chemistry, Vol. 2. R. Soc. Chem., Burlington House, London: 94–202Google Scholar
  48. VROM, 1988. Niederländische Liste: Testtabelle für die Beurteilung verschiedener Stoffe im Boden für die Nutzungsformen Wohngebiete.Google Scholar
  49. Yamauchi, H. & B. A. Fowler, 1994. Toxicity and metabolism of inorganic and methylated arsenicals. In Nriagu, J. O. (ed.), Arsenic in the Environment, Part II: Human Health and Ecosystem Effects. Wiley & Sons Inc., New York: 35–43.Google Scholar
  50. Wedepohl, K. H., 1978. Handbook of Geochemistry. Springer, New York.Google Scholar
  51. Zayed, A. M. & N. Terry, 2003. Chromium in the environment: factors affecting biological remediation. Plant and Soil 249: 139–156.CrossRefGoogle Scholar
  52. Zevenbergen, C. S., J. Bradley, L. P. Van Reeuwijk, A. K. Shyam, O. Hjelmar & R. N. J. Comans, 1999. Clay formation and metal fixation during weathering of fly ash. Environmental Science & Technology 33: 3405–3409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nikolaos Skoulikidis
    • 1
    Email author
  • Helen Kaberi
    • 1
  • Dimitrios Sakellariou
    • 1
  1. 1.Institute of Inland WatersHellenic Centre for Marine ResearchAnavissosGreece

Personalised recommendations