, Volume 613, Issue 1, pp 21–31 | Cite as

Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region

  • M. S. White
  • M. A. Xenopoulos
  • K. Hogsden
  • R. A. Metcalfe
  • P. J. Dillon


Long-term (~20 year) data on water level, water quality and aquatic biota from four remote research areas in the Laurentian Great Lakes region were compiled to reveal patterns of natural water-level fluctuation (WLF) and associated effects on water quality and aquatic communities. Of the 16 natural lakes (no dam impoundment and lowest possible anthropogenic disturbance) yearly amplitude in water level did not exceed 1.27 m (\( \overline {\text{x}} \) = 0.26 ± 0.15 m) and yearly average water levels did not deviate greater than 0.75 m (\( \overline {\text{x}} \) = 0.10 ± 0.11 m) from the long-term mean. Linear and waveform regression analyses revealed a significant (P ≤ 0.05) decreasing trend in water levels and a 10-year oscillation in WLFs. Similarly, linear regression analysis demonstrated a significant reduction in yearly amplitude WLF over time. Correlation analyses revealed significant correlations with water quality parameters (DOC, Ca2+, Conductivity, pH, SO4 2−) and WLFs in Boreal Shield research areas. Of the long-term biotic information available (periphyton, macrophytes, macroinvertebrates and fish) only macroinvertebrates demonstrated a significant relationship with natural WLFs. Species richness followed a unimodal response (P = 0.002, r 2 = 0.66) with richness decreasing in years when water levels were either higher or lower than the long-term mean. The novel results of this study demonstrate patterns in natural WLF and associated correlations with water quality and biota across multiple lakes within the Laurentian Great Lakes region. The results are congruent with the intermediate disturbance hypothesis and have direct implications for reservoir management and climate change modeling.


Water-level fluctuations Intermediate disturbance hypothesis Macroinvertebrates Climate change Water quality Lentic systems 



We would like to thank the many researchers who collected data over the various years at the Experimental Lakes Area, the Dorset Research Centre, the Turkey Lakes Watershed Study and the Long-Term Ecological Research area in northern Wisconsin. In particular, Ken Beaty (ELA), Stephen Page (ELA), Ray Semkin (TLWS) and Jim Rusak (LTER-Wisconsin) are thanked for providing data for this research. Dr. Mark Hanson and Henry Wilson are thanked for their reviews of this manuscript.


  1. Bertrand, C., E. Franquet, N. Chomerat & A. Cazaubon, 2004. An approach to the intermediate disturbance hypothesis at the landscape scale: the effects of hydrodynamic disturbance on phytoplankton communities. Archiv fuer Hydrobiologie 161: 351–369.CrossRefGoogle Scholar
  2. Blenckner, T., 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533: 1–14.CrossRefGoogle Scholar
  3. Cooper, C. M., 1980. Effects of abnormal thermal stratification on a reservoir benthic macroinvertebrate community. American Midland Naturalist 103: 149–154.CrossRefGoogle Scholar
  4. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509: 23–27.CrossRefGoogle Scholar
  5. Department of Fisheries and Oceans, 2005. Experimental Lakes Area.
  6. Dillon, P. J. & L. A. Molot, 2005. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: the Dorset, Ontario, study, 1978–1998. Journal of Geophysical Research 110.Google Scholar
  7. Fisher, P. & U. Öhl, 2005. Effects of water-level fluctuations on the littoral benthic fish community in lakes: a mesocosm experiment. Behavioral Ecology 16: 741–746.CrossRefGoogle Scholar
  8. Furey, P. C., R. N. Nordin & A. Mazumder, 2004. Water drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake and Reservoir Management 20: 280–295.Google Scholar
  9. George, D. F., S. C. Maberly & D. P. Hewitt, 2004. The influence of the North Atlantic Oscillation on the winter characteristics of lakes in the English Lake District. Freshwater Biology 23: 55–70.CrossRefGoogle Scholar
  10. Giorgi, F., P. H. Whetton, R. G. Jones, J. H. Christensen, L. O. Mearns, B. Hewiston, H. von Storch, R. Francisco & C. Jack, 2001. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geographical Research Letters 28: 3317–3320.CrossRefGoogle Scholar
  11. Government of Canada, 2005. Turkey Lakes Watershed.
  12. Grimås, U., 1961. The bottom fauna of natural and impounded lakes in northern Sweden. Report from the Institute of Freshwater Research, Drottningholm 42: 183–237.Google Scholar
  13. Hanson, P. C., D. L. Bade, S. R. Carpenter & T. K. Kratz, 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography 48: 477–497.Google Scholar
  14. Hill, N. M., P. A. Keddy & I. C. Wisheu, 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management 22: 723–736.PubMedCrossRefGoogle Scholar
  15. Hillman, T. J. & G. P. Quinn, 2002. Temporal changes in macroinvertebrate assemblages following experimental flooding in permanent and temporary wetlands in an Australian floodplain forest. River Research and Applications 18: 137–154.CrossRefGoogle Scholar
  16. Hunt, P. C. & J. W. Jones, 1972. The effect of water level fluctuations on a littoral fauna. Journal of Fish Biology 4: 385–394.CrossRefGoogle Scholar
  17. Hutchinson, G. E., 1953. The concepts of pattern in ecology. Proceedings of the Academy of Natural Sciences of Philadelphia 105: 1–12.Google Scholar
  18. Johst, K. & A. Huth, 2005. Biodiversity research: testing the intermediate disturbance hypothesis: when will there be two peaks of diversity? Diversity and Distributions 11: 111–120.CrossRefGoogle Scholar
  19. Kratz, T. K., L. A. Deegan, M. E. Harmon & W. K. Lauenroth, 2003. Ecological variability in space and time: insights gained from the US LTER program. BioScience 53: 57–67.CrossRefGoogle Scholar
  20. Loaiciga, H. A., J. B. Valdes, R. Vogel, J. Garvey & H. Schwarz, 1996. Global warming and the hydrologic cycle. Journal of Hydrology 174: 83–127.CrossRefGoogle Scholar
  21. Mackie, G. L., 2001. Applied Aquatic Ecosystem Concepts. Kendall/Hunt Publishing Company, Dubuque, Iowa: 1–400.Google Scholar
  22. Magnuson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quin, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region. Hydrological Processes 11: 825–871.CrossRefGoogle Scholar
  23. McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate analysis of ecological data. MjM Software, Gleneden Beach, Oregon, USA.Google Scholar
  24. McIntyre, J. W., 1994. Loons in freshwater lakes. Hydrobiologia 279–280: 393–413.CrossRefGoogle Scholar
  25. Molot, L. A. & P. J. Dillon, 1991. Nitrogen phosphorous ratios and the prediction of chlorophyll in phosphorus-limited lakes in central Ontario. Canadian Journal of Fisheries and Aquatic Sciences 48: 140–145.Google Scholar
  26. Molot, L. A. & P. J. Dillon, 1993. Nitrogen mass balances and denitrification rates in central Ontario lakes. Biogeochemistry 20: 195–212.CrossRefGoogle Scholar
  27. Neckles, H. A., H. R. Murkin & J. A. Cooper, 1990. Influences of seasonal flooding on macroinvertebrate abundance in wetland habitats. Freshwater Biology 23: 311–322.CrossRefGoogle Scholar
  28. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506–509: 257–263.CrossRefGoogle Scholar
  29. Ogbeibu, A. E. & B. J. Oribhabor, 2002. Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Research 36: 2427–2436.PubMedCrossRefGoogle Scholar
  30. Pimentel, D., B. Berger, D. Filiberto, M. Newron, B. Wolfe, E. Karabinakis, S. Clark, E. Poon, E. Abbett & S. Nandagopal, 2004. Water resources: agricultural and environmental issues. BioScience 54: 909–918.CrossRefGoogle Scholar
  31. Prepas, E. E., D. Planas, J. J. Gibson, D. H. Vitt, T. D. Prowse, P. W. Dinsmore, L. A. Halsey, P. H. McEachern, S. Paquet, G. J. Scrimgeour, W. M. Tonn, C. A. Paszkowski & K. Wolfstein, 2001. Landscape variables influencing nutrients and phytoplankton communities in Boreal Plain lakes of northern Alberta: a comparison of wetland- and upland- dominated catchments. Canadian Journal of Fisheries and Aquatic Sciences 58: 1286–1299.CrossRefGoogle Scholar
  32. Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnology and Oceanography 23: 1336–1343.CrossRefGoogle Scholar
  33. Riis, T. & I. Hawes, 2002. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany 74: 133–148.CrossRefGoogle Scholar
  34. SAS, 2001. The SAS System for Windows Version 8.02. SAS Institute Inc., Cary, NC, USA.Google Scholar
  35. SPSS, 2000. SigmaPlot 2000 for Windows Version 6.00. Systat Software Inc., Point Richmond, CA, USA.Google Scholar
  36. Suffling, R. & D. Scott, 2002. Assessment of climate change effects on Canada’s National Park system. Environmental Monitoring and Assessment 74: 117–139.PubMedCrossRefGoogle Scholar
  37. Turner, M. A., D. B. Huebert, D. L. Findlay, L. L. Hendzel, W. A. Jansen, R. A. Bodaly, L. M. Armstrong & S. E. M. Kasian, 2005. Divergent impacts of experimental lake-level drawdown on planktonic and benthic plant communities in a boreal forest lake. Canadian Journal of Fisheries and Aquatic Sciences 62: 991–1003.CrossRefGoogle Scholar
  38. University of Wisconsin, 2004. North Temperate Lakes Long Term Ecological Research Program.
  39. Valdivia, N., A. Heidemann, M. Thiel, M. Molis & M. Wahl, 2005. Effects of disturbance on the diversity of hard-bottom macrobenthic communities on the coast of Chile. Marine Ecology Progress Series 299: 45–54.CrossRefGoogle Scholar
  40. Wagner, T. & M. C. Falter, 2002. Response of an aquatic macrophyte community to fluctuating water levels in an oligotrophic lake. Lake and Reservoir Management 18: 52–65.Google Scholar
  41. Webster, K. E., T. K. Kratz, C. J. Bowser, J. J. Magnuson & W. J. Rose, 1996. The influence of landscape position on lake chemical responses to drought in northern Wisconsin. Limnology and Oceanography 41: 977–984.Google Scholar
  42. Webster, K. E., P. A. Soranno, S. B. Baines, T. K. Kratz, C. J. Bowser, P. J. Dillon, P. Campbell, E. J. Fee & R. E. Hecky, 2000. Structuring features of lake districts: landscape controls on lake chemical responses to drought. Freshwater Biology 43: 499–515.CrossRefGoogle Scholar
  43. Weston, H. N., J.-M. Davis, R. N. Nordin & A. Mazumder, 2004. Effects of water level fluctuation and short-term climate variation on thermal and stratification regimes of a British Columbia reservoir and lake. Lake and Reservoir Management 20: 91–1091.CrossRefGoogle Scholar
  44. Whiles, M. R. & B. S. Goldowitz, 2005. Macroinvertebratecommunities in central Platte River wetlands: patterns across a hydrologic gradient. Wetlands 25: 462–472.CrossRefGoogle Scholar
  45. Wilcox, D. A. & J. E. Meeker, 1991. Disturbance effects on aquatic vegetation in regulated and unregulated lakes in northern Minnesota. Canadian Journal of Botany 69: 1542–1551.Google Scholar
  46. Wood, P. J. & P. D. Armitage, 2004. The response of the macroinvertebrate community to low-flow variability and supra-seasonal drought within a groundwater dominated stream. Archiv fuer Hydrobiologie 161: 1–20.CrossRefGoogle Scholar
  47. Xenopoulos, M., D. M. Lodge, J. Frentress, T. A. Kreps, S. D. Bridgham, E. Grossman & C. J. Jackson, 2003. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnology and Oceanography 48: 2321–2334.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. S. White
    • 1
  • M. A. Xenopoulos
    • 2
  • K. Hogsden
    • 2
  • R. A. Metcalfe
    • 3
  • P. J. Dillon
    • 4
  1. 1.Watershed Ecosystems Graduate ProgramTrent UniversityPeterboroughCanada
  2. 2.Department of BiologyTrent UniversityPeterboroughCanada
  3. 3.Watershed Science CentreTrent UniversityPeterboroughCanada
  4. 4.Environmental & Resource StudiesTrent UniversityPeterboroughCanada

Personalised recommendations