Hydrobiologia

, Volume 611, Issue 1, pp 133–146 | Cite as

Hydraulic regime-based zonation scheme of the Curonian Lagoon

  • Ferrarin Christian
  • Razinkovas Arturas
  • Gulbinskas Saulius
  • Umgiesser Georg
  • Bliūdžiutė Lina
EUROPEAN LAGOONS

Abstract

The aim of this study was to delineate the spatial zonation of the Curonian Lagoon based on the hydraulic regime and the sediment characteristics. A finite element hydrodynamic model has been applied to the Curonian Lagoon to simulate the circulation patterns for three years. With the help of a transport diffusion model the salinity distribution and the residence times of the Curonian Lagoon have been investigated when forced by river runoff and by wind. The finite element method permitted to follow the details of bathymetry and morphology of the lagoon, describing the areas of special interest with higher resolution. The hydrodynamic model has been validated using in situ water level and salinity measurements. A statistical GIS analysis of the bottom sediment characteristics and the modeled residence times and salinity distribution led to a synthetic hydraulic regime-based zonation scheme. The derived classification scheme is of crucial value for understanding the renewal capacity and biota distribution patterns in the lagoon.

Keywords

Curonian Lagoon Finite element model Hydraulic zonation Residence times 

References

  1. Červinskas, E., 1959. The Main Features of the Hydrological Regime, Curonian Lagoon Results of a Complex Investigation. Institute of Biology, Vilnius: 47–67 (in Russian).Google Scholar
  2. Chubarenko, B. V. & I. P. Chubarenko, 1995. Modelling of currents in the Curonian Lagoon during storm wind influence. Meteorology and Hydrology 5: 54–60 (in Russian).Google Scholar
  3. Cucco, A. & G. Umgiesser, 2006. Modeling the Venice Lagoon residence time. Ecological Modelling 193: 34–51.CrossRefGoogle Scholar
  4. Davulienė, L., I. Davulienė, S. Dick, G. Trinkūnas & L. Valkūnas, 2002. Validation of the circulation model for Lithuanian coastal waters. Journal of Environmental and Chemical Physics 24(4): 226–231.Google Scholar
  5. Dumbrauskas, A., & P. Punys, 2003. Hydrological aspects of flooding of the Nemunas river delta. In EcoFloof International Conference, Towards Natural Flood Reduction Strategies, Warsaw.Google Scholar
  6. Ferrarin, C. & G. Umgiesser, 2005. Hydrodynamic modeling of a coastal lagoon: the Cabras lagoon in Sardinia, Italy. Ecological Modeling 188: 340–357.CrossRefGoogle Scholar
  7. Gasiūnaitė, Z. R., 2000. Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian lagoon (Baltic Sea). International Review of Hydrobiology 85: 649–657.Google Scholar
  8. Gasiūnaitė, Z. R. & A. Razinkovas, 2002. The salinity tolerance of two cladoceran species from the Curonian lagoon: an experimental study. Sea and Environment 2(7): 28–32.Google Scholar
  9. Gasiūnaitė, Z. R. & A. Razinkovas, 2004. Temporal and spatial patterns of the crustacean zooplankton dynamics in transitional lagoon ecosystem. Hydrobiologia 514: 139–149.CrossRefGoogle Scholar
  10. Gulbinskas, S., 1995. Distribution of recent bottom sediments in the depositional area Curonian Lagoon-Baltic Sea. The geographical Yearbook 28: 296–314 (in Lithuanian).Google Scholar
  11. Pilkaitytė, R. & A. Razinkovas, 2006. Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing. Hydrobiologia 555(1): 41–48.CrossRefGoogle Scholar
  12. Pustelnikovas, O., 1998. Geochemistry of sediments of the Curonian Lagoon. Mosko Aidai, Vilnius: 234.Google Scholar
  13. Raudsepp, U. & T. Kõuts, 2002. Wind-driven circulation in the Curonian Lagoon. Journal of Environmental and Chemical Physics 24: 151–155.Google Scholar
  14. Rodhe, H., 1992. Modeling Biogeochemical Cycles. Academic Press: 55–71.Google Scholar
  15. Scroccaro, I., A. Cappelletti, & G. Umgiesser, 2003. An idealized circulation for the Orbetello Lagoon. In Ozhan, E. (ed.), Proceedings of the Sixth International Conference on the Mediterranean Coastal Environment, Vol. 3, Ankara, Turkey: 2087–2098.Google Scholar
  16. Takeoka, H., 1984a. Exchange and transport time scales in the Seto Inland Sea. Continental Shelf Research 3: 327–341.CrossRefGoogle Scholar
  17. Takeoka, H., 1984b. Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research 3: 311–326.CrossRefGoogle Scholar
  18. Umgiesser, G., 1997. Modeling the Venice Lagoon. International Journal of Salt Lake Research 6: 175–199.Google Scholar
  19. Umgiesser, G. & A. Bergamasco, 1995. Outline of a primitive equations finite element model. Rapporto e Studi, Istituto Veneto of Scienze. Lettere ed Arti XII: 291–320.Google Scholar
  20. Umgiesser, G., 2000. Modeling the residual current in the Venice Lagoon. In Yanagi, T. (ed.), Interaction Between Estuaries, Coastal Seas and Shelf Seas. Terra Scientific Publishing Company, Tokyo: 107–124.Google Scholar
  21. Umgiesser, G., D. Melaku Canu, A. Cucco & C. Solidoro, 2004. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems 51: 123–145.CrossRefGoogle Scholar
  22. Žaromskis, R., 1996. Okeani Juros Estūarijos. Geografijos Institutas, Vilnius, Lithuania (in Lithuanian).Google Scholar
  23. Zemlys P., A. Ertürk & A. Razinkovas. 2D finite element ecological model for the Curonian lagoon. Hydrobiologia (in press).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ferrarin Christian
    • 1
  • Razinkovas Arturas
    • 2
  • Gulbinskas Saulius
    • 2
  • Umgiesser Georg
    • 1
  • Bliūdžiutė Lina
    • 2
  1. 1.Institute of Marine ScienceISMAR-CNRVeneziaItaly
  2. 2.Coastal Research and Planning InstituteKlaipėda UniversityKlaipedaLithuania

Personalised recommendations