, Volume 610, Issue 1, pp 139–152 | Cite as

Total phosphorus inference models and indices for coastal plain streams based on benthic diatom assemblages from artificial substrates

  • Karin C. Ponader
  • Donald F. Charles
  • Thomas J. Belton
  • Diane M. Winter
Primary research paper


We investigated the potential for using diatoms to monitor and assess nutrient enrichment in coastal plain streams using weighted-averaging inference models and diatom trophic indices. Samples were collected from low-gradient, clay- to sand-bottom streams in New Jersey (NJ), USA, using artificial substrates (diatometers). Multivariate analysis showed that conductivity was overall the most important explanatory variable. Total phosphorus (TP) explained a significant proportion of the variation in diatom species composition. There was statistical justification for development of inference models for TP but not for total nitrogen (TN). We developed and tested models for inferring TP using weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) regression and calibration techniques. We also created a diatom TP index by rescaling the inferred TP values. WA-PLS provided the best model (n = 38), which showed moderate predictive ability (r boot 2  = 0.43; RMSEPboot = 0.30 log10 μg l−1 TP); it performed best at lower TP concentrations and tended to underestimate values above 100 μg l−1. The TP index performed well; it assigned the majority of the index scores to the correct nutrient category. TP models and indices developed for the Coastal Plain had lower predictive ability than those developed for northern NJ and streams in other comparable geographic regions of the US. This lower performance can be attributed primarily to a data gap in the TP gradient in the calibration dataset (lack of sites with TP concentrations between 240 and 560 μg l−1), and a smaller number of samples. We conclude that diatom-based TP inference models and artificial substrate sampling are useful for assessing and monitoring nutrient enrichment in coastal plain streams. Given the worldwide distribution of streams similar to those in this study, these tools should be widely applicable.

Key words

Diatoms Inference model Index Nutrients Rivers New Jersey 



This project was supported by the New Jersey Department of Environmental Protection, Division of Science, Research and Technology, Trenton, NJ, through T. Belton. The Ruth Patrick Chair in Environmental Science provided additional support for D. Charles. We would like to thank Erin Hagan and David Keller for their work in the field and in the lab and the PCER Geochemistry Section staff Olivia Gibbs, Paul Kiry, and David Velinsky for analysis of water chemistry and algal biomass. Many thanks to Eduardo Morales and Marina Potapova for their support with diatom taxonomy, and to Mihaela Enache for helpful editorial recommendations.


  1. Acker, F. & J. Sherman, 1988. Use of the Catherwood Diatometer for the study of periphyton communities in flowing and standing waters. Academy of Natural Sciences of Philadelphia, Division of Environmental Research Procedure No. P-13−01. 6 pp.Google Scholar
  2. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates, and fish. 2nd edition. EPA 841-B-99-002. US Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  3. Birks, H. J. B., 1995. Quantitative paleoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5. Quaternary Research Association, Cambridge: 161–254.Google Scholar
  4. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstructions. Philosophical Transactions of the Royal Society of London, Series B 327: 263–278.CrossRefGoogle Scholar
  5. Birks, H. J. B., D. G. Frey & E. S. Deevey, 1998. Review #1: Numerical tools in paleolimnology- Progress, potentialities and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  6. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.CrossRefGoogle Scholar
  7. Charles, D. F., F. W. Acker, D. D. Hart, C. W. Reimer & P. B. Cotter, 2006. Large-scale regional variation in diatom-water chemistry relationships: Rivers of the eastern United States. Hydrobiologia 561: 27–57.CrossRefGoogle Scholar
  8. Coring, E., S. Schneider, A. Hamm & G. Hofmann, 1999. Durchgehendes Trophiesystem auf der Grundlage der Trophieindikation mit Kieselalgen. -DVWK Mitteilungen Nr. 6/1999. Deutscher Verband für Wasserwirtschaft und Kulturbau e.V., Bonn, 1999.Google Scholar
  9. Descy, J.-P. & M. Coste, 1990. Utilisation des diatomées benthiques pour l’évaluation de la qualité des eaux courantes. Rapport final, EEC contract B-71–23. Université Namur, CEMAGREF, Bordeaux.Google Scholar
  10. Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196.CrossRefGoogle Scholar
  11. European Parliament, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for community action in the field of water policy. Official Journal L 327.Google Scholar
  12. Fishman, M. J., 1993. Methods of analysis by the US Geological Survey National Water Quality Laboratory- Determination of Inorganic and Organic Constituents in the Water and Fluvial Sediments. US Geological Survey Open-File Report 93–125.Google Scholar
  13. Hill, M., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.CrossRefGoogle Scholar
  14. Hill, W., 1996. Effects of light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 121–148.Google Scholar
  15. Hohn, M. H. & J. Hellerman, 1963. The taxonomy and structure of diatom populations from three Eastern North American rivers using three sampling methods. Transactions of the American Microscopical Society 82: 250–329.CrossRefGoogle Scholar
  16. Iserentant, R. & A. Versailles. 1989. A comparison between artificial and natural substrates for estimation of water quality indices from diatom communities analysis. In Bohá, J. (ed.), Proceedings Vth International Conference Bioindicatores Deteriorisationis Regionis. Ceské Budejovice: 262–268.Google Scholar
  17. Juggins, S., 2003. C2 User Guide: Software for Ecological and Paleoecological Data Analysis and Visualization. University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
  18. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index. A new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  19. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hurlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E.-A. Lindstrøm, M. Leitao, P. Marvan, J. Padis’ak, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessment in Europe. Journal of Applied Phycology 10: 215–224.CrossRefGoogle Scholar
  20. Lowe, R. L. & J. M. McCullough, 1974. The effect of sewage treatment-plant effluent on diatom communities in the North Branch of the Portage River, Wood County, Ohio. Ohio Journal of Science 74: 154–161.Google Scholar
  21. Lowe, R. L. & Y. Pan, 1996. Use of Benthic Algae in Water Quality Monitoring. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 705–733.Google Scholar
  22. Marcus, M. D., 1980. Periphytic community response to chronic nutrient enrichment by a reservoir discharge. Ecology 61: 387–399.CrossRefGoogle Scholar
  23. NJDEP (New Jersey Department of Environmental Protection), 1999. Geologic Map of New Jersey, NJDEP.Division of Science, Research and Technology, Geological Survey, Trenton, NJ.Google Scholar
  24. NJDEP (New Jersey Department of Environmental Protection), 2000. Water Quality Monitoring Networks 2000. NJDEP, Division of Watershed Management, Trenton, NJ.Google Scholar
  25. Oliveira, M. A., L. C. Torgan, E. A. Lobo & A. Schwarzbold, 2001. Association of periphytic diatom species of artificial substrate in lotic environments in the Arroio Sampaio Basin, RS, Brazil: relationships with abiotic variables. Brazilian Journal of Biology 61: 523–540.CrossRefGoogle Scholar
  26. Omernik, J. M., 1987. Ecoregions of the conterminous United States. Map (scale 1:7, 500, 000). Annals of the Association of American Geographers 77: 118–125.CrossRefGoogle Scholar
  27. Omernik, J. M., 1995. Ecoregions. A Spatial Framework for Environmental Management. In Davis, W. S. & T. P. Simon (eds), Biology Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis, Boca Raton, FL: 49–62.Google Scholar
  28. Pan, Y. & R. L. Lowe, 1994. Independent and interactive effects of nutrients on benthic algae community structure. Hydrobiologia 291: 201–209.CrossRefGoogle Scholar
  29. Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society 15: 481–495.CrossRefGoogle Scholar
  30. Patrick, R., M. H. Hohn & J. H. Wallace, 1954. A new method for determining the pattern of the diatom flora. Notulae Naturae 259: 1–12.Google Scholar
  31. Patrick, R., B. Matson & L. Anderson, 1979. Streams and Lakes in the Pine Barrens. In Forman, R. T. T. (ed.), Pine Barrens: Ecosystem and Landscape. Rutgers University Press, New Brunswick, NJ: 169–193.Google Scholar
  32. Ponader, K. C., D. F. Charles & T. J. Belton, 2007. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators 7: 79–93.CrossRefGoogle Scholar
  33. Potapova, M., D. F. Charles, K. C. Ponader & D. M. Winter, 2004. Quantifying species indicator values for trophic diatom indices: A comparison of approaches. Hydrobiologia 517: 25–41.CrossRefGoogle Scholar
  34. Potapova, M. & D. F. Charles, 2005. Choice of substrate in algae-based water-quality assessment. Journal of the North American Benthological Society 24: 415–427.CrossRefGoogle Scholar
  35. Potapova, M. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7: 48–70.CrossRefGoogle Scholar
  36. Rott, E., E. Pipp & P. Pfister, 2003. Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Archiv für Hydrobiologie Supplement 149. Algological Studies 110: 91–115.CrossRefGoogle Scholar
  37. Schiefele, S. & C. Schreiner, 1991. Use of diatoms for monitoring nutrient enrichment, acidification and impact of salt in rivers in Germany and Austria. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers I. Universität Innsbruck, Institut fur Botanik: 103–110.Google Scholar
  38. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.PubMedCrossRefGoogle Scholar
  39. Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. W. H. Freeman and Company, New York.Google Scholar
  40. Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 11–40.Google Scholar
  41. ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 91–169.Google Scholar
  42. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.CrossRefGoogle Scholar
  43. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 221–317.Google Scholar
  44. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows. User’s Guide: Software for Canonical Community Ordination. Version 4.5. Microcomputer Power, Ithaca, NY.Google Scholar
  45. Tibby, J., 2004. Development of a diatom-based model for inferring total phosphorus in south-eastern Australian water storages. Journal of Paleolimnology 31: 23–36.CrossRefGoogle Scholar
  46. Tuchman, M. L. & R. J. Stevenson, 1980. Comparison of clay tile, sterilized rock and natural substrate diatom communities in small streams in southern Michigan, USA. Hydrobiologia 75: 73–79.CrossRefGoogle Scholar
  47. US Code, 2002. Federal Water Pollution Control Act. Title 33, § 1251 et seq.Google Scholar
  48. USEPA (US Environmental Protection Agency), 2000a. Nutrient Criteria Technical Guidance Manual: Rivers and Streams. EPA–822-B-00–002. US Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  49. USEPA (US Environmental Protection Agency), 2000b. Ambient Water Quality Criteria Recommendations: Rivers and Streams in Nutrient Ecoregion XIV.EPA-822-B-00–022. US Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  50. USEPA (US Environmental Protection Agency), 2002. National Water Quality Inventory Report. Part 1. Water Quality Assessments. EPA-841-R-02-001. US Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  51. USGS (US Geological Survey), 2005. Water Resource Data, New Jersey, Water Year 2004, Vol. 1. Surface Water Data. Water Data Report NJ-04-1, US Department of the Interior, US Geological Survey, West Trenton, NJ.Google Scholar
  52. van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  53. Wan Manzah, W. O. & M. Mansor, 2002. Aquatic pollution assessment based on attached diatom communities in the Pinang River Basin, Malaysia. Hydrobiologia 487: 229–241.CrossRefGoogle Scholar
  54. Weilhoefer, C. L. & Y. Pan, 2007. A comparison of diatom assemblages generated by two sampling protocols. Journal of the North American Benthological Society 26: 308–313.CrossRefGoogle Scholar
  55. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd edn. Academic Press, San Diego.Google Scholar
  56. Winter, J. G. & H. C. Duthie, 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49.CrossRefGoogle Scholar
  57. Wolfe, P. E., 1977. The Geology and Landscapes of New Jersey. Crane, Russak and Company Inc, New York, NY.Google Scholar
  58. Zampella, R. A., K. J. Laidig & R. L. Lowe, 2007. Distribution of diatoms in relation to land use and pH in blackwater coastal plain streams. Environmental Management 39: 369–384.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Karin C. Ponader
    • 1
    • 2
  • Donald F. Charles
    • 1
  • Thomas J. Belton
    • 3
  • Diane M. Winter
    • 1
    • 4
  1. 1.Patrick Center for Environmental ResearchThe Academy of Natural SciencesPhiladelphiaUSA
  2. 2.Harvard University HerbariaCambridgeUSA
  3. 3.New Jersey Department of Environmental Protection, Division of ScienceResearch and TechnologyTrentonUSA
  4. 4.Department of GeosciencesUniversity of Nebraska LincolnLincolnUSA

Personalised recommendations