Advertisement

Hydrobiologia

, Volume 607, Issue 1, pp 51–62 | Cite as

Historical colonization of the Mediterranean Sea by Atlantic fishes: do biological traits matter?

  • Frida Ben Rais Lasram
  • Jean Antoine Tomasini
  • Mohamed Salah Romdhane
  • Thang Do Chi
  • David Mouillot
Primary research paper

Abstract

Since its opening 5.33 million years ago, the Gibraltar Strait has always contributed to the Mediterranean fauna and flora. Despite the increasing importance of the phenomenon, ecological determinants underlying colonization success of Atlantic fishes in the Mediterranean Sea have been poorly investigated. Here we reconstruct the recent historical colonization of the whole Mediterranean Sea by Atlantic fishes and we aim to determine where Atlantic fishes preferentially establish and whether some biological traits and ecological factors can be correlated to the colonization success (climate match, position in the water column, maximum body length, propagules, confamilial resistance, depth). A database on Atlantic fish species records from 1810 to 2006 was built and the colonization rate of each introduced species was estimated. Analysis of Variance, Chi squared test and logistic regression were used to investigate the relationships between ecological variables and colonization success. In addition, an index of asymmetry was used to analyse the relative colonization on the two sides of the Mediterranean Sea. Overall 48.33% of Atlantic species introduced in the Mediterranean Sea succeeded in colonizing eastwards. We found that habitat depth of Atlantic species is significantly related to their colonization success due to the obstacle of the shallow depth of the Gibraltar Strait (300 m). It also appears that despite the cyclonic general water circulation on the North Western basin, the northern side is more colonized than the southern one: 70.40% of the studied species colonize the northern side, while only 29.62% colonize the southern one. Two hypotheses may explain this trend: the bottom-up process that enhances the colonization success of Atlantic fishes along the Spanish coast of Alboran Sea owning to its high productivity and the intensiveness of the scientific explorations along the northern Mediterranean side. We conclude that crossing the Gibraltar Strait does not guarantee the colonization success and that species life-history and functional traits are poor predictors. Instead we suggest that environmental factors may determine favourable locations for invasive species installation.

Keywords

Colonization Gibraltar Strait Biological traits Bottom-up process Water circulation Depth 

Notes

Acknowledgements

The authors wish to express their gratitude to the Cooperation and Cultural Action Services of the French Embassy in Tunisia that funded this research by a PhD grant. This project was also supported by the Total Foundation.

Supplementary material

10750_2008_9366_MOESM1_ESM.pdf (39 kb)
(PDF 38 kb)

References

  1. Abello, P. & J. E. Cartes, 1992. Population characteristics of the deep-sea lobsters Polycheles typhlops and Stereomastis sculpta (Decapoda: Polychelidae) in a bathyal mud community of the Mediterranean Sea. Marine Biology 114: 109–117.Google Scholar
  2. Albérola, C. & C. Millot, 1995. On the seasonal and mesoscale variabilities of the Northern cur rent during the PRIMO-0 experiment in the Western Mediterranean Sea. Oceanologica Acta 18: 163–192.Google Scholar
  3. Allue, R. & P. Rubies, 1984. On Lampanyctus intricarius Taning, 1928 (Osteichthyes, Myctophidae) in the Western Mediterranean. Investigacion Pesquera 48: 175–180.Google Scholar
  4. Almada, F., V. C. Almada, T. Guillemaud & P. Wirtz, 2005. Phylogenetic relationships of the north-eastern Atlantic and Mediterranean blenniids. Biological Journal of the Linnean Society 86: 283–295.CrossRefGoogle Scholar
  5. Bardin, O. & D. Pont, 2002. Environmental factors controlling the spring immigration of two estuarine fishes Atherina boyeri and Pomatoschistus spp. into a Mediterranean lagoon. Journal of Fish Biology 61: 560–578.CrossRefGoogle Scholar
  6. Ben Souissi, J., D. Golani, H. Mejri & C. Capape, 2005. On the occurrence of Cheilopogon furcatus in the Mediterranean Sea. Journal of Fish Biology 67: 1144–1149.CrossRefGoogle Scholar
  7. Ben Tuvia, A. & D. Golani, 1984. A West-African Fangtooth Moray Eel Enchelycore anatina from the Mediterranean Coast of Israel Copeia 2: 541–544.CrossRefGoogle Scholar
  8. Bosc, E., A. Bricaud, & D. Antoine, 2004. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Seas derived from 4 years of SeaWiFS observations. Global Biogeochemical Cycles 18:GB1005. doi: 10.1029/2003GB002034.
  9. Cardenas, S. & J. M. Ortiz, 1997. First record of Fistularia petimba Lacepède, 1803 (Pisces, Fistularidae) off the coast of Cadíz (southern Iberian Peninsula). Boletín del Instituto Español de Oceanografia 13: 83–86.Google Scholar
  10. Chesson, P. L. & R. R. Warner, 1981. Environmental variability promotes coexistence in lottery competitive systems. American Naturalist 117: 923–943.CrossRefGoogle Scholar
  11. Coll, M., I. Palomera, S. Tudela & F. Sarda, 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59: 63–96.CrossRefGoogle Scholar
  12. Crespo, J., J. C. Rey & A. Garcia, 1987. Primera cita de Acanthurus monroviae Steindachner, 1876 y de Diodon eydouxii Brissout de Barneville, 1846 para la ictiofauna europa. Miscellaneous Zoology 11: 271–275.Google Scholar
  13. Darwin, C., 1859. On the Origin of Species. John Murray, London: 490.Google Scholar
  14. Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.CrossRefGoogle Scholar
  15. Duncan, R. P., M. Bomford, D. M. Forsyth & L. Conibear, 2001. High predictability in introduction outcomes and the geographical range size of introduced Australian birds: a role for climate. Journal of Ecology 70: 621–632.Google Scholar
  16. Dunne, J. A., R. J. Williams & N. D. Martinez, 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology letters 5: 558–567.CrossRefGoogle Scholar
  17. Durish, Z., 1987. An analysis of the zoogeography of the decapod crustaceans (Crustacea, Decapoda) of the Mediterranean. Oceanology 27: 352–356.Google Scholar
  18. Emig, C. C. & P. Geistdoerfer, 2004. Faune profonde en Mer Méditerranée: les échanges historiques, géographiques et bathymétriques. Carnets de Géologie/Notebooks on Geology, article 2004/01.Google Scholar
  19. Emlet, R. B., 1995. Developmental mode and species geographic range size in regular sea urchins (Echinodermata: Echinoidea). Evolution 49: 476–489.CrossRefGoogle Scholar
  20. Froese, R. & D. Pauly, 2006. FishBase. World Wide Web electronic publication [www.fishbase.org, version (05/2006)].
  21. Gaston, K. J., 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford: 276. ISBN: 0198526415.Google Scholar
  22. Gokoglu, M., T. Bodur & Y. Kaya, 2004. First records of Hippocampus fuscus and Syngnathus rostellatus (Osteichthyes: Syngnathidae) from the Anatolian coast (Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 84: 1093–1094.CrossRefGoogle Scholar
  23. Golani, D., 1996. The marine ichthyofauna of the eastern levant—History, inventory, and characterization. Israel Journal of Zoology 42: 15–55.Google Scholar
  24. Golani, D. & A. Ben Tuvia, 1986. New records of fishes from the Mediterranean coast of Israel including Red Sea immigrants. Cybium 10: 285–291.Google Scholar
  25. Golani, D. & O. Sonin, 1996. The occurrence of the tropical west African marine fishes Acanthurus monroviae (Acanthuridae) and Arius parkii (Ariidae) in the Levant. Journal of Ichthyology and Aquatic Biology 2: 1–3.Google Scholar
  26. Golani, D., L. Orsi Relini, E. Massuti & J. P. Quignard, 2002. The CIESM Atlas of exotic species in the Mediterranean, vol. 1, Monaco: 254 pp. ISBN 92-990003-1-x.Google Scholar
  27. Leis, J. M. 1991. The pelagic phase of coral reef fishes: larval biology of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego: 183–230Google Scholar
  28. Libralato, S., R. Pastres, F. Pranovi, S. Raicevich, A. Granzotto, O. Giovanardi & P. Torricelli, 2002. Comparison between the energy flow networks of two habitat in the Venice lagoon. P.S.Z.N. Marine Ecology 23: 228–236.CrossRefGoogle Scholar
  29. McArthur, R. H. & E. D. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ: 203.Google Scholar
  30. McKinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450–453.CrossRefGoogle Scholar
  31. Meador, M. R. & R. M. Goldstein, 2003. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure. Environmental Management 31: 504–517.PubMedCrossRefGoogle Scholar
  32. Menge, B. A., 2000. Top-down and bottom-up community regulation in marine rocky intertidal habitats. Journal of Experimental Marine Biology and Ecology 250: 257–289.PubMedCrossRefGoogle Scholar
  33. Millot, C., 1987. Circulation in the Western Mediterranean sea. Oceanologia Acta 10: 143–149.Google Scholar
  34. Olden, J. A. & N. L. Poff, 2004. Ecological process driving biotic homogenization: Testing a mechanistic model using fish faunas. Ecology 85: 1867–1875.CrossRefGoogle Scholar
  35. Orsi Relini, L., 2002. Occurrence of the South American fish Pinguipes brasilianus in the Mediterranean. Cybium 26: 147–149.Google Scholar
  36. Pastore, M. & E. Tortonese, 1985. Prima segnalazione in Mediterraneo dello squalo Rhizoprionodon acutus (Rüppell). Thalassia Salentina 14: 11–15.Google Scholar
  37. Perkins, H. & P. Pistek, 1990. Circulation in the Algerian basin during June 1986. Journal of Geophysical Research 95: 1577–1585.CrossRefGoogle Scholar
  38. Quignard, J. P. & J. A. Tomasini, 2000. Mediterranean fish biodiversity. Biologia Marina Mediterranea 7: 1–66.Google Scholar
  39. Reina Hervas, J. A., J. E. G. Raso & M. E. Manjon-Cabeza, 2004. First record of Sphoeroides spengleri (Osteichthyes: Tetraodontidae) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 84: 1089–1090.CrossRefGoogle Scholar
  40. Risso, A., 1810. Ichthyologie de Nice. F. Schoell, Paris.Google Scholar
  41. Ruesink, J. L., 2005. Global analysis of factors affecting the outcome of freshwater fish introductions. Conservation Biology 19: 1883–1893.CrossRefGoogle Scholar
  42. Savage, V. M., J. F. Gillooly, J. H. Brown, G. B. West & E. Charnov, 2004. Effects of body size and temperature on population size. American Naturalist 163: 429–441.PubMedCrossRefGoogle Scholar
  43. Shanks, A. L., B. A. Grantham & M. H. Carr, 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecology Applications 13: 159–169.CrossRefGoogle Scholar
  44. Srinivasan, U. T., J. A. Dunne, J. Harte, N. D. Martinez, 2007. Response of complex food webs to realistic extinction sequences. Ecology 88: 671–682.PubMedCrossRefGoogle Scholar
  45. Strauss, S. Y., C. O. Webb & N. Salamin, 2006. Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences of the United States of America 103: 5841–5845.PubMedCrossRefGoogle Scholar
  46. Streftaris, N., A. Zenetos & E. Papathanassiou, 2005. Globalization in marine ecosystems: the story of non-indigenous marine species across European seas. Oceanography and Marine Biology—an Annual Review 43: 419–453.Google Scholar
  47. Tintoré, J. D., P. E. La Violette, I. Blade & A. Cruzado, 1988. A study of an intense density front in the Eastern Alboran sea: the Almeria-Oran front. Journal of Physical Oceanography 18: 1384–1397.CrossRefGoogle Scholar
  48. Torchio, M., 1963. Accertata presenza di un rappresentante della famiglia Diodontidae in Mediterraneo. Atti della Società Italiana della Scienze Naturali 102: 277–281.Google Scholar
  49. Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar
  50. Warner, R. R. & P. L. Chesson, 1985. Coexistence mediated by recruitment fluctuations—a field guide to the storage effect. American Naturalist 125: 769–787.CrossRefGoogle Scholar
  51. Webb, J. T. & K. J. Gaston, 2003. On the heritability of geographic range sizes. American Naturalist 161: 553–566.PubMedCrossRefGoogle Scholar
  52. Whitehead, P. J. P., L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese, 1986. Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO, Paris: 3–1223.Google Scholar
  53. Wolf, C. M., T. Garland & B. Griffith, 1998. Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biology Conservation 86: 243–255.CrossRefGoogle Scholar
  54. Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S. Halpern, J. B. C. Jackson, H. K. Lotze, F. Micheli, S. R. Palumbi, E. Sala, K. A. Selkoe, J. J. Stachowicz & R. Watson, 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787.PubMedCrossRefGoogle Scholar
  55. Yokes, B., R. Dervisoglu & B. Karacilk, 2002. An investigation of the marine biological diversity along Likya shores. Sualti Bilim ve Teknoloji Toplantisi Bildiriler Kitabi Istanbul, 2000, 166–181 (in Turkish).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Frida Ben Rais Lasram
    • 1
    • 2
  • Jean Antoine Tomasini
    • 1
  • Mohamed Salah Romdhane
    • 2
  • Thang Do Chi
    • 1
  • David Mouillot
    • 1
  1. 1.UMR CNRS UMII n°5119, Ecosystèmes LagunairesUniversité Montpellier IIMontpellier Cedex 5France
  2. 2.UR Ecosystèmes et Ressources AquatiquesInstitut National Agronomique de TunisieTunisTunisia

Personalised recommendations