Hydrobiologia

, Volume 607, Issue 1, pp 41–49 | Cite as

Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China)

Primary research paper

Abstract

The spring–summer successions of phytoplankton and crustacean zooplankton were examined weekly in Meiliang Bay of the subtropical Lake Taihu in 2004 and 2005. During the study period, the ecosystem of Meiliang Bay was characterized by (i) clearly declined nitrogen compounds (nitrate, TN, and ammonium) and slowly increased phosphorus compounds (TP and SRP), (ii) increased total phytoplankton density and rapid replacement of chlorophyta (mainly Ulothrix) by cyanobacteria (mainly Microcystis), and (iii) rapid replacement of large-sized crustaceans (Daphnia and Moina) by small-sized ones (Bosmina, Limnoithona, and Ceriodaphnia). Results from the CCA and correlation analysis indicate that the spring-summer phytoplankton succession was primarily controlled by abiotic factors. Cyanobacteria were mainly promoted by increased temperature and decreased concentrations of nitrogen compounds. The pure contribution of crustacean was low for the variation of phytoplankton suggesting a weak top-down control by crustacean zooplankton in the subtropical Lake Taihu.

Keywords

Microcystis Crustacean zooplankton Phytoplankton Canonical correspondence analysis (CCA) Lake Taihu 

Supplementary material

10750_2008_9365_MOESM1_ESM.pdf (991 kb)
(PDF 991 kb)

References

  1. Abrantes, N., S. C. Antunes, M. J. Pereira & F. Gonçalves, 2006. Seasonal succession of cladocerans and phytoplankton and their interaction in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica 29: 54–64.CrossRefGoogle Scholar
  2. APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington DC.Google Scholar
  3. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  4. Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: “the CyanoHABs”. Human and Ecological Risk Assessment 7: 1393–1407.CrossRefGoogle Scholar
  5. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Krechner & X. He, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.CrossRefGoogle Scholar
  6. Chen, W. M. & A. Nauwerck, 1996. A note on composition and feeding of the crustacean zooplankton of Lake Taihu, Jiangsu Province, China. Limnologica 26: 275–279.Google Scholar
  7. Chen, Y. W., B. Q. Qin, K. Teubner & M. T. Dokulil, 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research 25: 445–453.CrossRefGoogle Scholar
  8. Chiang, S. C. & N. S. Du, 1979. Fauna Sinica, Crustacea, Freshwater Cladocera. Science Press, Academia Sinica, Beijing: 297 pp (in Chinese).Google Scholar
  9. Chow-Fraser, P., 1986. An empirical model to predict in situ grazing rate of Diaptomus minutus Lilljeborg on small algal particles. Canadian Journal of Fisheries and Aquatic Sciences 43: 1065–1070.Google Scholar
  10. DeMott, W. R., 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixture of a toxic cyanobacterium and green alga. Freshwater Biology 42: 263–274.CrossRefGoogle Scholar
  11. de Figueiredo, D. R., A. S. S. P. Reboleira, S. C. Antunes, N. Abrantes, U. Azeiteiro, F. Gonçalves & M. J. Pereria, 2006. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia 568: 145–157.CrossRefGoogle Scholar
  12. Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.CrossRefGoogle Scholar
  13. Guo, N. C. & P. Xie, 2006. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. Environmental Pollution 143: 513–518.PubMedCrossRefGoogle Scholar
  14. Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–97.CrossRefGoogle Scholar
  15. Hu, H. J., R. Li, Y. X. Wei, C. Zhu, J. Chen & Z. X. Shi, 1979. Freshwater Algae in China. Science Press, Shanghai, China: 525 pp (in Chinese).Google Scholar
  16. Huang, X. F., X. M. Chen, Z. T. Wu & C. Y. Hu, 1984. Studies on changes in abundance and biomass of zooplankton in Lake Donghu, Wuhan. Acta Hydrobiology Sinica 8: 345–358 (in Chinese, with English abstract).Google Scholar
  17. Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.CrossRefGoogle Scholar
  18. Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.Google Scholar
  19. Leflaive, J. & L. Ten-Hage, 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199–214.CrossRefGoogle Scholar
  20. McCarthy, M. J., P. J. Lavrentyev, L. Y. Yang, L. Zhang, Y. W. Chen, B. Q. Qin & W. S. Gardner, 2007. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581: 195–207.CrossRefGoogle Scholar
  21. Miura, T., 1990. The effects of planktivorous fishes on the plankton community in a eutrophic lake. Hydrobiologia 200: 567–579.CrossRefGoogle Scholar
  22. Ortega-Mayagoitia, E., C. Rojo & M. A. Rodrigo, 2003. Controlling factors of phytoplankton assemblages in wetlands: an experimental approach. Hydrobiologia 502: 177–186.CrossRefGoogle Scholar
  23. Qin, B. Q., W. P. Hu & W. M. Chen, 2004. Process and Mechanism of Environmental Changes of the Taihu Lake. Science Press, Beijing, China: 389 pp (in Chinese).Google Scholar
  24. Reynolds, C. S., 1999. Non-determinism to probability, or N:P in the community ecology of phytoplankton. Archiv für Hydrobiologie 146: 23–25.Google Scholar
  25. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.CrossRefGoogle Scholar
  26. Scheffer, M., S. Rinaldi & Y. A. Kuznetsov, 1997. On the dominance of filamentous cyanobacteria in shallow turbid lakes. Ecology 78: 272–282.CrossRefGoogle Scholar
  27. Sheng, J. R., 1979. Fauna Sinica, Crustacea, Freshwater Copepoda. Science Press, Academia Sinica, Beijing: 450 pp (in Chinese).Google Scholar
  28. Smith, V. H., 1983. Low nitrogen to phosphorous ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.PubMedCrossRefGoogle Scholar
  29. Sommer, U., M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  30. Stähl-Delbanco, A., L. A. Hansson & M. Gyliström, 2003. Recruitment of resting stages may induce blooms of Microcystis at low N:P ratios. Journal of Plankton Research 25: 1099–1106.CrossRefGoogle Scholar
  31. Takamura, N., A. Otsuki, M. Aizaki & Y. Nojiri, 1992. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in lake Kasumigaura, Japan. Archiv für Hydrobiologie 124: 129–148.Google Scholar
  32. ter Braak, C. J., 1995. Oraination. In Jongman, R. H., C. J. ter Braak & O. F. Van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 91–173.Google Scholar
  33. Xie, L., P. Xie, S. Li, H. Tang & H. Liu, 2003. The low TN: TP ratio, a cause or a result of Microcystis blooms? Water Research 37: 2073–2080.PubMedCrossRefGoogle Scholar
  34. Yang, H., 2006. Ecological studies on microcystins in lakes Chaohu and Taihu. PhD thesis, Institute of Hydrobiology, Chinese Academy of Science, Wuhan: 66 pp (in Chinese with an English abstract).Google Scholar
  35. Zhang, X., P. Xie, L. Hao, N. C. Guo, Y. G. Gon, X. L. Hu, J. Chen & G. D. Liang, 2006. Effects of the phytoplanktivorous silver carp (Hypophthalmichthys molitrixon) on plankton and the hepatotxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing. Aquaculture 257: 173–186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of HydrobiologyThe Chinese Academy of SciencesWuhanChina

Personalised recommendations