Advertisement

Hydrobiologia

, Volume 605, Issue 1, pp 173–182 | Cite as

Quantifying phenotypic gradients in freshwater snails: a case study in Lithasia (Gastropoda: Pleuroceridae)

  • Russell L. MintonEmail author
  • Andrew P. Norwood
  • David M. Hayes
Primary research paper

Abstract

Many authors have described a pattern of morphological variation in freshwater bivalves where shells taken from lentic and lotic environments, or headwaters and main stem reaches, appear to exhibit phenotypic gradients in size and shape. For example, mussels taken from headwater reaches tend to possess smooth, less inflated shells compared to the more obese, sculptured individuals downstream. Others observed similar relationships in certain freshwater gastropods, but this variation has not been quantified nor its existence explained in an ecological or evolutionary context. Geometric morphometrics indicated freshwater snails shells from the pleurocerid genus Lithasia from the Duck River, Tennessee, USA, show phenotypic gradients similar to those in freshwater mussels. Shells from upstream areas were narrow and less sculptured on the posterior portions of their body whorls, while downstream shells were more inflated and possessed significantly more sculpture. This phenotypic variation may reduce predation or damage due to dislodging. The nature of the observed plasticity suggests an unidirectional environment similar to that proposed by the river continuum concept.

Keywords

Lithasia Freshwater Gastropod Phenotypic plasticity Geometric morphometrics 

Notes

Acknowledgments

Jay Snell and Kim Swanger helped with digital imaging and landmarking. Kathryn E. Perez and three anonymous reviewers provided valuable comments toward improving the manuscript. G. Thomas Watters provided access to the specimens at OSU. The authors were partially supported by a Howard Hughes Medical Institute undergraduate science education grant awarded to ULM.

References

  1. Adams, C. C., 1900. Variation in Io. Proceedings of the American Association for the Advancement of Science 49: 208–225.Google Scholar
  2. Adams, C. C., 1915. The variations and ecological distribution of the snails of the genus Io. Memoirs of the National Academy of Science 12: 1–92 + 60 plates.Google Scholar
  3. Appleton, R. D. & A. R. Palmer, 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proceedings of the National Academy of Sciences USA 85: 4387–4391.CrossRefGoogle Scholar
  4. Ball, G. H., 1922. Variation in fresh-water mussels. Ecology 3: 93–121.CrossRefGoogle Scholar
  5. Bertness, M. D. & C. Cunningham, 1981. Crab shell-crushing predation and gastropod architectural defense. Journal of Experimental Marine Biology and Ecology 50: 213–230.CrossRefGoogle Scholar
  6. Bogan, A. E. & P. W. Parmalee, 1983. Tennessee’s Rare Wildlife. Volume II: The Mollusks. Tennessee Wildlife Resources Agency and Tennessee Department of Conservation, Nashville.Google Scholar
  7. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, New York.Google Scholar
  8. Brown, K. M. & J. F. Quinn, 1988. The effect of wave action on growth in three species of intertidal gastropods. Oecologia 75: 420–425.CrossRefGoogle Scholar
  9. Buchner, O., 1910. Ueber individuel Formverschiedenheiten bei Anodonten. Jahreshelfte des Vereins für Väterlandischer naturkunde in Wätemburg. Fünfundsechziegster Jahrgang 56: 60–223.Google Scholar
  10. Burch, J. B. & J. L. Tottenham, 1980. North American freshwater snails: species list, ranges, and illustrations. Walkerana 1: 81–215.Google Scholar
  11. Davis, G. M., 1974. Report on rare and endangered status of a selected number of freshwater Gastropoda from southeastern U.S.A. Unpublished report submitted to the U.S. Fish and Wildlife Service, U.S. Department of Interior, Washington, DC.Google Scholar
  12. Davis, G. M. & M. C. Pons de Silva, 1984. Potamolithus: morphology, convergence, and relationships among hydrobioid snails. Malacologia 25: 73–108.Google Scholar
  13. DeWitt, T. J., 1998. Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life-history in a freshwater snail. Journal of Evolutionary Biology 11: 465–480.CrossRefGoogle Scholar
  14. DeWitt, T. J., B. W. Robinson & D. S. Wilson, 2000. Functional diversity among predators of a freshwater snail impose an adaptive tradeoff for shell morphology. Evolutionary Ecology Research 2: 129–148.Google Scholar
  15. Douglas, M. & P. S. Lake, 1994. Species richness of stream stones: an investigation of the mechanisms generating the species-area relationship. Oikos 69: 387–396.CrossRefGoogle Scholar
  16. Downes, B. J., P. S. Lake, E. S. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.CrossRefGoogle Scholar
  17. Dussart, G. B. J., 1987. Effects of water flow on the detachment of some aquatic pulmonate gastropods. American Malacological Bulletin 5: 65–72.Google Scholar
  18. Etter, R. J., 1988. Physiological stress and color polymorphism in the intertidal snail Nucella lapillus. Evolution 42: 660–680.CrossRefGoogle Scholar
  19. Goodrich, C., 1940. The Pleuroceridae of the Ohio River drainage system. Occasional Papers of the Museum of Zoology, University of Michigan 417, 1–21.Google Scholar
  20. Grier, N. M., 1920. Morphological features of certain mussel-shells found in Lake Erie, compared with those of the corresponding species found in the drainage of the Upper Ohio. Annals of the Carnegie Museum 13: 145–182.Google Scholar
  21. Haas, F. & E. Schwarz, 1913. Die Unioniden des Gebietes zwischen Mainz und deutschen Donau in tiergeographischer Hinsicht. Abhandlugen der Mathematisch-Physikalischen Classe der Königlich Bayerischen Akademie der Wissenschaften 26: 1–34.Google Scholar
  22. Haase, M., 2003. Clinal variation in shell morphology of the freshwater gastropod Potamopyrgus antipodarum along two hill-country streams in New Zealand. Journal of the Royal Society of New Zealand 33: 549–560.CrossRefGoogle Scholar
  23. Harrell, R. C., B. J. Davis & T. C. Dorris, 1967. Stream order and species diversity of fishes in an intermittent Oklahoma stream. American Midland Naturalist 78: 428–436.CrossRefGoogle Scholar
  24. Hayes, D. M., R. L. Minton & K. E. Perez, 2007. Elimia comalensis (Gastropoda: Pleuroceridae) from the Edwards Plateau, Texas: multiple unrecognized endemics or native exotic? American Midland Naturalist 158: 97–112.CrossRefGoogle Scholar
  25. Hazay, J., 1881. Die Mollusken-fauna von Budapest. Malakozoologische Blätter 4: 132–208.Google Scholar
  26. Hazel, W. N. & M. S. Johnson, 1990. Microhabitat choice in the land snail Theba pisana (Müller). Heredity 65: 449–454.CrossRefGoogle Scholar
  27. Heller, J., P. Mordan, F. Ben-Ami & N. Sivan, 2005. Conchometrics, systematics and distribution of Melanopsis (Mollusca: Gastropoda) in the Levant. Zoological Journal of the Linnean Society 144: 229–260.CrossRefGoogle Scholar
  28. Hollander, J., D. C. Adams & K. Johannesson, 2006. Evolution of adaptation through allometric shifts in a marine snail. Evolution 60: 2490–2497.PubMedGoogle Scholar
  29. Holomuzki, J. R. & B. J .F. Biggs, 2006. Habitat-specific variation and performance trade-offs in shell armature of New Zealand mudsnails. Ecology 87: 1038–1047.PubMedCrossRefGoogle Scholar
  30. Holzangel, W. E & C. Lydeard, 2000. A molecular phylogeny of North American Pleuroceridae (Gastropoda: Cerithioidea) based on mitochondrial 16S rDNA sequences. Journal of Molluscan Studies 66: 233–257.CrossRefGoogle Scholar
  31. Hoverman, J. T. & R. A. Relyea, 2007. How flexible is phenotypic plasticity? Developmental windows for the induction and reversal of inducible defenses. Ecology 88: 693–705.PubMedCrossRefGoogle Scholar
  32. Hueber, L. V., 1870. Zur Naturgeschichte der Unionen. Jahrbucher des naturhistorischen Landes-Museum von Kärnthen 10: 150–157.Google Scholar
  33. Jakubic, B., 2006. Reproductive pattern of Viviparus viviparus (Linnaeus 1758) (Gastropoda, Viviparidae) from littoral aggregations in a through-flow reservoir (central Poland). Polish Journal of Ecology 54: 39–55.Google Scholar
  34. Jeffries, M., 1993. Invertebrate colonization of artificial pondweeds of differing fractal dimension. Oikos 67: 142–148.CrossRefGoogle Scholar
  35. Johnson, M. S. & R. Black, 1999. Nodilittorina nodosa (Gray, 1839) is a plastic morphotype of Nodilittorina australis (Gray, 1826). Journal of Molluscan Studies 65: 111–119.CrossRefGoogle Scholar
  36. Johnson, S. G., C. D. Hulsey & F. J. Garcia de Leon, 2007. Spatial mosaic evolution of snail defensive traits. BMC Evolutionary Biology 7: 50.PubMedCrossRefGoogle Scholar
  37. Kemp, P. & M. D. Bertness, 1984. Snail shape and growth rates: evidence for plastic shell allometry in Littorina littorea. Proceedings of the National Academy of Sciences USA 81: 811–813.Google Scholar
  38. Kouamélan, E. P., G. G. Teugels, V. N’Douba, G. Gooré Bi & T. Koné, 2003. Fish diversity and its relationship with environmental variables in a West African basin. Hydrobiologia 505: 139–146.CrossRefGoogle Scholar
  39. Krist, A. C., 2002. Crayfish induce a defensive shell shape in a freshwater snail. Invertebrate Zoology 121: 235–242.CrossRefGoogle Scholar
  40. Langerhans, R. B. & T. J. DeWitt, 2002. Plasticity constrained: over-generalized induction cues cause maladaptive phenotypes. Evolutionary Ecology Research 4: 857–870.Google Scholar
  41. Lodge, D. M. & A. M. Hill, 1994. Factors governing species composition, population size, and productivity of cool-water crayfishes. Nordic Journal of Freshwater Research 69: 111–136.Google Scholar
  42. Lowell, R. B., C. R. Fletcher, J. Grahame & P. J. Mill, 1994. Ontogeny of shell morphology and shell strength of the marine snails Littorina obtusa and Littorina mariae: different defense strategies in a pair of sympatric, sibling species. Journal of Zoology 234: 149–164.CrossRefGoogle Scholar
  43. March, M. C., 1910–11. Studies in morphogenesis of certain Pelecypoda. I. A preliminary note on variation in Unio pictorum and Anodonta cygnea. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 1910–11: 1–18.Google Scholar
  44. Minton, R. L., 2002. A cladistic analysis of Lithasia (Gastropoda: Pleuroceridae) using morphological characters. Nautilus 116: 39–49.Google Scholar
  45. Minton, R. L. & R. W. Gundersen, 2001. Puperita tristis is an ecotype of Puperita pupa. American Malacological Bulletin 16: 13–20.Google Scholar
  46. Minton, R. L. & C. Lydeard, 2003. Phylogeny, taxonomy, genetics and global heritage ranks of an imperiled, freshwater snail genus Lithasia (Pleuroceridae). Molecular Ecology 12: 75–87.PubMedCrossRefGoogle Scholar
  47. Montgomery, D. R., 1999. Process domains and the river continuum. Journal of the American Water Resources Association 35: 397–410.CrossRefGoogle Scholar
  48. Ortmann, A. E., 1920. Correlation of shape and station in freshwater mussels (naiades). Proceedings of the American Philosophical Society 59: 269–312.Google Scholar
  49. Penczak, T. & R. H. K. Mann, 1990. The impact of stream order on fish populations in the Pilica drainage basin, Poland. Polskie Archiwum Hydrobiologii 37: 243–261.Google Scholar
  50. Perez, K. E. & R. L. Minton, 2008. What’s in a name? Practical applications for systematics and taxonomy in freshwater gastropod conservation. Journal of the North American Benthological Society 27 (in press).Google Scholar
  51. Perez, K. E. & N. E. Strenth, 2003. A systematic review of the land snail Euglandina singleyana (Binney, 1892) (Mollusca: Gastropoda: Spiraxidae). Proceedings of the Biological Society of Washington 116: 649–660.Google Scholar
  52. Pfenninger, M. & F. Magnin, 2001. Phenotypic evolution and hidden speciation in Candidula unifasciata ssp. (Helicellinae, Gastropoda) inferred by 16S variation and quantitative shell traits. Molecular Ecology 10: 2541–2554.PubMedCrossRefGoogle Scholar
  53. Preston, S. J. & D. Roberts, 2007. Variation in shell morphology of Calliostoma zizyphinum (Gastropoda: Trochidae). Journal of Molluscan Studies 73: 101–104.CrossRefGoogle Scholar
  54. Reyment, R., 1991. Multidimensional Paleobiology. Pergamon Press, New York.Google Scholar
  55. Robson, B. J. & E. T. Chester, 1999. Spatial patterns of invertebrate species richness in a river: the relationship between riffles and microhabitats. Australian Journal of Ecology 24: 599–607.CrossRefGoogle Scholar
  56. Rohlf, F. J., 2005–2007. tpsDig, tpsRegr, tpsRelw. Distributed by the author at http://www.life.bio.sunysb.edu/morph/.
  57. Rohlf, F. J & F. L. Bookstein, 2003. Computing the uniform component of shape variation. Systematic Biology 52: 66–69.PubMedCrossRefGoogle Scholar
  58. Rohlf, F. J. & L. F. Marcus, 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.CrossRefGoogle Scholar
  59. Rohlf, F. J. & D. E. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.CrossRefGoogle Scholar
  60. Rosewater, J., 1960. Geographic variation of Pleurocera canaliculata (Mollusca: Prosobranchia) in the Ohio River basin. Unpublished Ph.D. dissertation, Harvard University, Cambridge.Google Scholar
  61. Sell, H., 1908. Biologische Beobachtungen an Najades. Archiv für Hydrobiologie und Planktonkunde 1908: 179–188.Google Scholar
  62. Slice, D. E., F. L. Bookstein, L. F. Marcus & F. J. Rohlf, 1996. Appendix I. A glossary for geometric morphometrics. In Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor & D. E. Slice (eds), Advances in Morphometrics. NATO ASI Series A. Plenum Press, New York, 531–551.Google Scholar
  63. Smith, M. F. & J. L. Patton, 1988. Subspecies of pocket gophers: causal bases for geographic differentiation in Thomomys bottae. Systematic Zoology 37: 163–178.CrossRefGoogle Scholar
  64. Statzner, B. & B. Higler, 1985. Questions and comments on the river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 42: 1038–1044.Google Scholar
  65. Stein, C. B. & D. H. Stansbery, 1984. A systematic study of the morphological forms of ellipstomid snails in the Duck River, Tennessee, using electrophoretic analysis. Unpublished report submitted to the United States Fish and Wildlife Service, United States Department of the Interior, Washington DC.Google Scholar
  66. Tanaka, M. O. & R. C. Maia, 2006. Shell morphological variation of Littorina angulifera among and within mangroves in NE Brazil. Hydrobiologia 599: 193–202.CrossRefGoogle Scholar
  67. Trussell, G. C. & L. D. Smith, 2000. Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proceedings of the Academy of Natural Sciences USA 97: 2123–2127.CrossRefGoogle Scholar
  68. Trussell, G. C., A. S. Johnson, S. G. Rudolph & E. S. Gilfillan, 1993. Resistance to dislodgement: habitat and size-specific differences in morphology and tenacity in an intertidal snail. Marine Ecology Progress Series 100: 135–144.CrossRefGoogle Scholar
  69. United States Geological Survey, 2007. National water information system. http://www.waterdata.usgs.gov/nwis, accessed 3 August 2007.
  70. Urabe, M., 2000. Phenotypic modulation by the substratum of shell sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceridae). Journal of Molluscan Studies 66: 53–59.CrossRefGoogle Scholar
  71. Utterback, W. I., 1916. The Naiades of Missouri. Reprinted from American Midland Naturalist.Google Scholar
  72. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.Google Scholar
  73. Vermeij, G. J. & A. P Covich, 1978. Coevolution of freshwater gastropods and their predators. American Naturalist 112: 833–843.CrossRefGoogle Scholar
  74. Vogel, S., 1994. Life in Moving Fluids. Princeton University Press, Princeton.Google Scholar
  75. Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems, 29–42.Google Scholar
  76. Watters, G. T., 1994. Form and function of unionoidean shell sculpture and shape (Bivalvia). American Malacological Bulletin 11: 1–20.Google Scholar
  77. Wilson, C. B. & H. W. Clark, 1914. The mussels of the Cumberland River and its tributaries. United States Bureau of Fisheries Document 781: 1–63.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Russell L. Minton
    • 1
    Email author
  • Andrew P. Norwood
    • 1
  • David M. Hayes
    • 1
    • 2
  1. 1.Department of BiologyUniversity of Louisiana at MonroeMonroeUSA
  2. 2.Department of Biological SciencesArkansas State UniversityState UniversityUSA

Personalised recommendations