Hydrobiologia

, Volume 604, Issue 1, pp 57–75 | Cite as

A linked hydrodynamic and water quality model for the Salton Sea

  • Eu Gene Chung
  • S. Geoffrey Schladow
  • Joaquim Perez-Losada
  • Dale M. Robertson
SALTON SEA

Abstract

A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including \(\hbox{PO}_4^{-3},\,\, \hbox{NO}_3^{-1}\) and \(\hbox{NH}_4^{+1},\) DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented.

Keywords

Restoration Nutrients Sediment resuspension Internal loading 

References

  1. Aalderink, R. H., L. Lijklema, J. Breukelman, W. Vanraaphorst & A. G. Brinkman, 1985. Quantification of wind induced resuspension in a shallow lake. Water Science and Technology 17: 903–914.Google Scholar
  2. Bowie, G. L., W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan & S. A. Gherini, 1985. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling, 2nd Edn. U.S. EPA, EPA 600-3-85-040.Google Scholar
  3. Carpelan, L. H., 1958. The Salton Sea. Physical and chemical characteristics. Limnology and Oceanography 3: 373–386.Google Scholar
  4. Chapra, S. C., 1997. Surface Water-Quality Modeling. McGraw-Hill Companies, Inc., Singapore.Google Scholar
  5. Cloern, J. E., B. E. Cole & R. S. Oremland, 1983. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologica 105: 195–206.CrossRefGoogle Scholar
  6. Cook, C. B., 2000. Internal dynamics of terminal basin lake: a numerical model for management of the Salton Sea. PhD Dissertation, University of California, Davis, USA.Google Scholar
  7. Cook, C. B., G. T. Orlob & D. W. Huston, 2002. Simulation of wind-driven circulation in the Salton Sea: implications for indigenous ecosystems. Hydrobiologia 473: 59–75.CrossRefGoogle Scholar
  8. Cooper, J. J. & D. L. Koch, 1984. Limnology of a desertic terminal lake, Walker Lake, Nevada, U.S.A. Hydrobiologia 118: 275–292.Google Scholar
  9. Galat, D. L., E. L. Lider, S. Vigg & S. R. Robertson, 1981. Limnology of a large, deep, North American terminal lake, Pyramid Lake, Nevada, U.S.A. Hydrobiologia 82: 281–317.CrossRefGoogle Scholar
  10. Hakanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, New York.Google Scholar
  11. Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.CrossRefGoogle Scholar
  12. Hamilton, D. P. & S. G. Schladow, 1997. Prediction of water quality in lakes and reservoirs. 1. Model description. Ecological Modelling 96: 91–110.CrossRefGoogle Scholar
  13. Heald, P. C., S. G. Schladow, J. E. Reuter & B. Allen, 2005. Modeling MTBE and BTEX in lakes and reservoirs used for recreational boating. Environmental Science and Technology 39: 1111–1118.PubMedCrossRefGoogle Scholar
  14. Herbst, D. B., 1998, Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. International Journal of Salt Lake Research 7: 261–274.Google Scholar
  15. Holdren, G. C. & A. Montaño, 2002. Chemical and physical characteristics of the Salton Sea, California. Hydrobiologia 473: 1–21.CrossRefGoogle Scholar
  16. Imboden, D. M., 1974. Phosphorus model of lake eutrophication. Limnology and Oceanography 19: 297–304.Google Scholar
  17. Jellison, R., L. G. Miller, J. M. Melack & G. L. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnology and Oceanography 38: 1020–1039.Google Scholar
  18. Jorgensen, S. E. &. G. Bendoricchio, 2001. Fundamentals of Ecological Modelling, Elsevier Science Ltd., Amsterdam, 526 p.Google Scholar
  19. Kristensen, P., M. Sondergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.CrossRefGoogle Scholar
  20. Lehman, J. T., D. B. Botkin & G. E. Likens, 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnology and Oceanography 20: 343–364.Google Scholar
  21. Losada, J. P., 2001. A deterministic model for lake clarity; application to management of Lake Tahoe (California–Nevada), USA. PhD dissertation, University of Girona, Spain.Google Scholar
  22. Luettich, R. A., D. R. F. Harleman & L. Somlyody, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.Google Scholar
  23. McCord, S. A. & S. G. Schladow, 1998. Numerical simulations of degassing scenarios for CO2-rich Lake Nyos, Cameroon. Journal of Geophysical Research—Solid Earth, 103(B6): 12355–12364.CrossRefGoogle Scholar
  24. McCord, S. A., S. G. Schladow & T. G. Miller, 2000. Modeling artificial aeration kinetics in ice covered lakes. Journal of Environmental Engineering-ASCE 126: 21–31.CrossRefGoogle Scholar
  25. Nagid, E. J., D. E. Canfield & M. V. Hoyer, 2001. Wind-induced increases in trophic state characteristics of a large (27 km(2)), shallow (1.5 m mean depth) Florida lake. Hydrobiologia 455: 97–110.CrossRefGoogle Scholar
  26. OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris.Google Scholar
  27. Osgood, R. A., 1988. Lake mixis and internal phosphorous dynamics. Archiv Für Hydrobiologie 113: 629–638.Google Scholar
  28. Reddy, K. R., M. M. Fisher & D. Ivanoff, 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality 25: 363–371.CrossRefGoogle Scholar
  29. Robertson, D. M. & S. G. Schladow, 2008. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: an empirical modeling approach. Hydrobiologia (this issue).Google Scholar
  30. Robertson, D. M., S. G. Schladow & G. C. Holdren, 2008. Long-term changes in the phosphorus loading to and trophic state of the Salton Sea, California. Hydrobiologia (this issue).Google Scholar
  31. Romero, J. R., I. Kagalou, J. Imberger, D. Hela, M. Kotti, A. Bartzokas, T. Albanis, N. Evmirides, S. Karkabounas, J. Papagiannis & A. Bithava, 2002. Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia 474: 91–105.CrossRefGoogle Scholar
  32. Schladow, S. G. & D. P. Hamilton, 1997. Prediction of water quality in lakes and reservoirs. 2. Model calibration, sensitivity analysis and application. Ecological Modelling 96: 111–123.CrossRefGoogle Scholar
  33. Schlesinger, W. H., 1991. Biogeochemistry, an Analysis of Global Change. Academic Press, Inc., London, 443 p.Google Scholar
  34. Somlyody, L., 1986. Wind induced sediment resuspension in shallow lakes. In Bhra, T. F. E. C. (ed.), Water Quality Modelling in the Inland Natural Environment. The Fluid Engineering Centre, 28-298.Google Scholar
  35. Somlyody, L. & G. van Straten, 1986. Modeling and Managing Shallow Lake Eutrophication with Application to Lake Balaton. Springer-Verlag, New York.Google Scholar
  36. Sondergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  37. State of California Resources Agency, 2006. Salton sea ecosystem restoration program draft programmatic environmental impact report. State Clearinghouse # 2004021120.Google Scholar
  38. Stephens, D. W. & D. M. Gillespie, 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnology and Oceanography 21: 74–87.CrossRefGoogle Scholar
  39. Tõnno, I. & T. Nõges, 2003. Nitrogen fixation in a large shallow lake: rates and initiation conditions. Hydrobiologia 490: 23–30.CrossRefGoogle Scholar
  40. U.S. EPA, 2000. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs. Report no. EPA-822-B00-001, Washington, DC, variously paginated.Google Scholar
  41. Walker, W. W., 1986. Empirical Methods for Predicting Eutrophication in Impoundments; Report 3, Phase III: Applications Manual. Technical Report E-81-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Google Scholar
  42. Watts, J. M., B. K. Swan, M. A. Tiffany & S. H. Hurlbert, 2001. Thermal, mixing, and oxygen regimes of the Salton Sea, California, 1997–1999. Hydrobiologia 466: 159–176.CrossRefGoogle Scholar
  43. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd Edn. Academic Press, San Diego, 1006.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Eu Gene Chung
    • 1
  • S. Geoffrey Schladow
    • 1
    • 2
  • Joaquim Perez-Losada
    • 3
  • Dale M. Robertson
    • 4
  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Tahoe Environmental Research CenterUniversity of CaliforniaDavisUSA
  3. 3.Departament of PhysicsUniversity of GironaGironaSpain
  4. 4.U.S. Geological SurveyMiddletonUSA

Personalised recommendations