Hydrobiologia

, Volume 597, Issue 1, pp 29–41 | Cite as

Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss National Park (Cirque of Macun) and relation to environmental variables

  • Beat Oertli
  • Nicola Indermuehle
  • Sandrine Angélibert
  • Hélène Hinden
  • Aurélien Stoll
ECOLOGY OF EUROPEAN PONDS

Abstract

High-altitude freshwater ecosystems and their biocoenosis are ideal sentinel systems to detect global change. In particular, pond communities are likely to be highly responsive to climate warming. For this reason, the Swiss National Park has included ponds as part of a long-term monitoring programme of the high-alpine Macun cirque. This cirque covers 3.6 km2, has a mean altitude of 2,660 m a.s.l., and includes a hydrographic system composed of a stream network and more than 35 temporary and permanent ponds. The first two steps in the programme were to (i) make an inventory of the macroinvertebrates of the waterbodies in the Macun cirque, and (ii) relate the assemblages to local or regional environmental variables. Sampling was conducted in 25 ponds between 2002 and 2004. The number of taxa characterising the region (Macun cirque) was low, represented by 47 lentic taxa. None of them was endemic to the Alps, although several species were cold stenothermal. Average pond richness was low (11.3 taxa). Assemblages were dominated by Chironomidae (Diptera), and Coleoptera and Oligochaeta were also relatively well represented. Other groups, which are frequent in lowland ponds, had particularly poor species richness (Trichoptera, Heteroptera) or were absent (Gastropoda, Odonata, Ephemeroptera). Macroinvertebrate assemblages (composition, richness) were only weakly influenced by local environmental variables. The main structuring processes were those operating at regional level and, namely, the connectivity between ponds, i.e. the presence of a physical connection (tributary) and/or small geographical distance between ponds. The results suggest that during the long-term monitoring of the Macun ponds (started in 2005), two kinds of change will affect macroinvertebrate assemblages. The first change is related to the natural dynamics, with high local-scale turnover, involving the metapopulations characterising the Macun cirque. The second change is related to global warming, leading to higher local and regional richness through an increase in the number of colonisation events resulting from the upward shift of geographical ranges of species. At the same time the cold stenothermal species from Macun will be subject to extinction.

Keywords

Zoobenthos Small waterbodies Biodiversity Swiss Alps Biomonitoring 

Notes

Acknowledgements

This work was partly supported by the Research Committee from the Swiss National Park. Thanks to Thomas Scheurer and Flurin Filli for logistic support and to everyone who helped in the field—Nathalie Menetrey, Lionel Sager, Zoé Fleury and Marianna Massa. Special thanks to Chris Robinson for his helpful collaboration and also for his constructive review of the manuscript. A large part of the chemical analyses were realised by the Swiss Federal Institute of Aquatic Science and Technology. We are very grateful to the CSCF for access to the Swiss databanks on fauna. Help in identification was provided by Gilles Carron (Coleoptera), Brigitte Lods-Crozet (Chironomidae), Narcisse Giani (Oligochaeta), Verena Lubini (Trichoptera) and Nigel Thew (Sphaeriidae). Also, Jane O’Rourke and Mericia Whitfield are thanked for improving the English style. The constructive comments of two anonymous referees improved the paper.

Supplementary material

10750_2007_9218_MOESM1_ESM.doc (256 kb)
(DOC 256 kb)

References

  1. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  2. Briers, R. A. & J. Biggs, 2005. Spatial patterns in pond invertebrate communities: separating environmental and distance effects. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 549–558.CrossRefGoogle Scholar
  3. Clausnitzer, V. & R. Jödicke (eds), 2004. Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation. International Journal of Odonatology 7: 1–430.Google Scholar
  4. Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield & P. J. Williams, 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125–133.CrossRefGoogle Scholar
  5. Colwell, R. K., 2005. EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s Guide and application published at: http://purl.oclc.org/estimates.
  6. Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.CrossRefGoogle Scholar
  7. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van de Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  8. Delarze, R., Y. Gonseth & P. Galland, 1998. Guide des milieux naturels de Suisse. Delachaux et Niestlé, Lausanne.Google Scholar
  9. Delucchi, C. M., 1989. Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78: 199–207.CrossRefGoogle Scholar
  10. Foggo, A., S. D. Rundle & D. T. Bilton, 2003. The net result: evaluating species richness extrapolation techniques for littoral pond invertebrates. Freshwater Biology 48: 1756–1764.CrossRefGoogle Scholar
  11. Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405: 220–227.PubMedCrossRefGoogle Scholar
  12. Gaston, K. J. & J. I. Spicer, 2004. Biodiversity. An Introduction, 2nd edn. Blackwell Science Ltd, Malden, Oxford, Victoria.Google Scholar
  13. Gurung A. B. (ed.), 2005. GLOCHAMORE Global Change and Mountain Regions. Research Strategy. Mountain Research Initiative, Bern.Google Scholar
  14. Hinden, H., 2004. La biodiversité des petits plans d’eau alpins de Suisse. MS these, University of Geneva, Geneva.Google Scholar
  15. Hinden, H., B. Oertli, N. Menetrey, L. Sager & J.-B. Lachavanne, 2005. Alpine pond biodiversity: what are the related environmental variables? Aquatic Conservation: Marine and Freshwater Ecosystems 15: 613–624.CrossRefGoogle Scholar
  16. Hodkinson, I. D. & J. K. Jackson, 2005. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management 355: 649–666.CrossRefGoogle Scholar
  17. Illies, J., 1978. Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart.Google Scholar
  18. Jeffries, M., 1988. Measuring talling element of chance in pond populations. Freshwater Biology 20: 383–393.CrossRefGoogle Scholar
  19. Jeffries, M., 2005. Small ponds and big landscapes: the challenge of invertebrate spatial and temporal dynamics for European pond conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 541–548.CrossRefGoogle Scholar
  20. Körner, C., 2001. Alpine ecosystems. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. Academic Press, San Diego, 133–144.Google Scholar
  21. Logue, J. B., C. T. Robinson, C. Meier & J. R. Van der Meer, 2004. Relationship between sediment organic matter, bacteria composition, and the ecosystem metabolism of alpine streams. Limnology and Oceanography 49: 2001–2010.CrossRefGoogle Scholar
  22. Magurran, A. E., 2003. Measuring Biological Diversity. Blackwell Publishing, Oxford.Google Scholar
  23. Maibach, A. & C. Meier, 1987. Atlas de distribution des libellules de Suisse (Odonata). Centre Suisse de Cartographie de la Faune, Ligue suisse pour la protection de la nature, Neuchâtel.Google Scholar
  24. Matthaei, S., 2003. Expansion contraction cycle of a stream/lake network in a high alpine floodplain. Diploma thesis, Swiss Federal Institute of Environmental Science and Technology, Dübendorf, Switzerland.Google Scholar
  25. Oertli, B., D. Auderset Joye, E. Castella, R. Juge & J-B. Lachavanne, 2000. Diversité biologique et typologie écologique des étangs et petits lacs de Suisse. Rapport final. OFEFP et Université de Genève.Google Scholar
  26. Oertli, B., D. Auderset Joye, E. Castella, R. Juge, D. Cambin & J.-B. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.CrossRefGoogle Scholar
  27. Oertli, B., D. Auderset Joye, E. Castella, R. Juge, A. Lehmann & J.-B. Lachavanne, 2005a. PLOCH: a standardised method for sampling and assessing the biodiversity in ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 665–679.CrossRefGoogle Scholar
  28. Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J.-B. Lachavanne, 2005b. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.CrossRefGoogle Scholar
  29. Rey, P. & P. Pitsch, 2004. Die Entdeckung der Bescheidenheit: erste Einblicke in das Leben der Fische auf Macun. Cratschla 2: 23.Google Scholar
  30. Robinson, C. T. & B. Kawecka, 2005. Benthic diatoms of an Alpine stream/lake network in Switzerland. Aquatic Sciences 67: 492–506.Google Scholar
  31. Robinson, C. T. & S. Matthaei, 2007. Hydrological heterogeneity of an Alpine stream/lake network in Switzerland. Hydrological Processes 21: 3146–3154.CrossRefGoogle Scholar
  32. Rosenzweig, M. L., W. R. Turner, J. G. Cox & T. H. Ricketts, 2003. Estimating diversity in unsampled habitats of a biogeographical province. Conservation Biology 17: 864–874.CrossRefGoogle Scholar
  33. Ruegg, J. & C. T. Robinson, 2004. Comparison of macroinvertebrate assemblages of permanent and temporary streams in an Alpine flood plain, Switzerland. Archiv für Hydrobiologie 161: 489–510.CrossRefGoogle Scholar
  34. Schanz, F., 1984. Chemical and algological characteristics of five high mountain lakes near the Swiss National Park. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 22: 1066–1070.Google Scholar
  35. Scheurer, T., 2004. Global change research in mountain biosphere reserves: Swiss National Park biosphere reserve. In Lee, C. & T. Schaaf (eds), Global Change Research in Mountain Biosphere Reserves. Proceedings of the International Launching Workshop, Entlebuch Biosphere Reserve, Switzerland, 10–13 November 2003. UNESCO, Paris, 85–92.Google Scholar
  36. Schneider, D. W., 1999. Influence of hydroperiod on invertebrate community structure. In Batzer, D. P., R. R. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. Wiley, New York, 299–318.Google Scholar
  37. Soderstrom, O., 1987. Upstream movements of invertebrates in running waters—a review. Archiv für Hydrobiologie 111: 197–208.Google Scholar
  38. Sommaruga, R., R. Psenner, E. Schafferer, K. A. Koinig & S. Sommaruga-Wograth, 1999. Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: potential effect of climatic warming an UV underwater attenuation. Arctic Antarctic and Alpine Research 31: 247–253.CrossRefGoogle Scholar
  39. Sommaruga-Wograth, S., K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64–67.CrossRefGoogle Scholar
  40. Stoll, A., 2005. Mise en place d’un monitoring de la biodiversité des étangs de Macun (Parc National Suisse, GR). Travail de diplôme. University of Applied Sciences of Western Switzerland, EIL, Lullier.Google Scholar
  41. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eaux douces. Systématique, biologie, écologie. CNRS Editions, Paris.Google Scholar
  42. Theurillat, J. P. & A. Guisan, 2001. Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change 50: 77–109.CrossRefGoogle Scholar
  43. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.PubMedCrossRefGoogle Scholar
  44. Thuillier, W., S. Lavorel, M. B. Araújo, M. T. Sykes & I. C. Prentice, 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102: 8245–8250.CrossRefGoogle Scholar
  45. Van de Meutter, F., R. Stoks & L. De Meester, 2006. Lotic dispersal of lentic macroinvertebrates. Ecography 29: 223–230.CrossRefGoogle Scholar
  46. Väre, H., R. Lampinen, C. Humphries & P. Williams, 2003. Taxonomic diversity of vascular plants in the European alpine areas. In Nagy, L., G. Grabherr, C. Körner & D. B. A. Thompson (eds), Alpine Biodiversity in Europe—A Europe-wide Assessment of Biological Richness and Change. Springer, 133–148.Google Scholar
  47. Wathne, B. M. & H. H. Hansen, 1997. MOLAR. Measuring and modelling the dynamic response of remote mountain lake ecosystem to environmental change: a program of Mountain lake Research. MOLAR Project Manual. NIVA Report 0-96061, Oslo.Google Scholar
  48. Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie Supplement 58: 97–206.Google Scholar
  49. Williams, D. D., 1987. The Ecology of Temporary Waters. Croom Helm, London & Sydney.Google Scholar
  50. Wissinger, S. A., A. J. Bohonak, H. H. Whiteman & W. S. Brown, 1999. Subalpine wetlands in central Colorado: habitat permanence, salamander predation, and invertebrate communities. In Batzer, D. P., R. R. Rader & S. A. Wissinger (eds), Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York, 757–790.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Beat Oertli
    • 1
  • Nicola Indermuehle
    • 1
  • Sandrine Angélibert
    • 1
  • Hélène Hinden
    • 2
  • Aurélien Stoll
    • 1
  1. 1.Department of Nature ManagementUniversity of Applied Sciences of Western Switzerland - EILJussy, GenevaSwitzerland
  2. 2.Laboratoire d’Ecologie et de Biologie aquatiqueUniversity of GenevaGenevaSwitzerland

Personalised recommendations