, Volume 600, Issue 1, pp 105–119 | Cite as

Cladocera assemblages from the surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables

  • Anna M. DeSellasEmail author
  • Andrew M. Paterson
  • Jon N. Sweetman
  • John P. Smol
Primary research paper


Fossil cladoceran remains preserved in surface sediment samples from 44 oligotrophic lakes in south-central Ontario were examined to evaluate the relationships between species assemblages and measured environmental variables. Differences in cladoceran assemblages were related to physical and chemical variables using multivariate techniques. Redundancy Analysis (RDA) identified five environmental variables as significantly influencing assemblage composition: sulphate (SO 4 2− ), calcium (Ca2+), pH, maximum lake depth (Z max) and dissolved organic carbon (DOC). There was a distinct separation of lakes and taxa along the ion gradient based on SO4, Ca and pH. Additionally, cladoceran communities in coloured, shallow lakes had relatively higher abundances of littoral chydorid species and the pelagic taxa Holopedium spp., and the Daphnia pulex complex. Deep, clear lakes had relatively higher abundances of other pelagic taxa. Predation by fish (measured as presence–absence) and Chaoborus (measured as density) were less significant than some of the physico-chemical variables in influencing cladoceran assemblage structure. However, this could be due to the limited resolution of the predation data that was available at the time of this study. The distribution of cladocerans in the surface sediment, and their relation to these important environmental variables, suggests that there is considerable potential for the use of sedimentary cladoceran remains as environmental indicators in south-central Ontario lakes.


Cladocera South-central Ontario Paleolimnology Multiple stressors Lakes 



We thank Carole Cheung, Bev Clark, Adam Jeziorski, Michelle Palmer and Ron Ingram who were involved with field work, many colleagues at the Ontario Ministry of the Environment (Dorset, Ontario) and two anonymous reviewers for their valuable comments. We are grateful to Michelle Palmer and Dr. Norman Yan of York University and Ron Ingram of the Ontario Ministry of the Environment (Dorset, Ontario) for providing water chemistry data and to the Ontario Ministry of Natural Resources for providing fish data. This project is funded by an Ontario Ministry of the Environment Best in Science Grant and NSERC grants to Dr. John Smol.


  1. Ashforth, D. & N. D. Yan. The interactive effects of falling calcium concentrations and rising temperatures on Daphnia pulex life table parameters at low and high food concentrations. Limnology and Oceanography (In Press).Google Scholar
  2. Arnott, S. E., N. D. Yan, W. Keller & K. Nicholls, 2001. The influence of drought-induced acidification on the recovery of plankton in Swan Lake (Canada). Ecological Applications 11: 747–763.CrossRefGoogle Scholar
  3. Barbiero, R. P. & M. L. Tuchman, 2004. Changes in the crustacean communities of Lakes Michigan, Huron, and Erie following the invasion of the predatory cladoceran Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences 61: 2111–2125.CrossRefGoogle Scholar
  4. Bigler, C., O. Heiri, R. Krskova, A. F. Lotter & M. Sturm, 2006. Distribution of diatoms, chironomids, and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquatic Sciences 68: 154–171.CrossRefGoogle Scholar
  5. Blindow, I., A. Hargeby, B. M. A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44: 185–197.CrossRefGoogle Scholar
  6. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  7. Bos, D. G., 2001. Sedimentary cladoceran remains, a key to interpreting past changes in nutrient and trophic interactions. Ph.D. Thesis, Queen’s University, Kingston, Ontario, Canada, 206 pp.Google Scholar
  8. Boucherele, M. M., J. P. Smol, T. C. Oliver, S. R. Brown & R. McNeely, 1986. Limnologic consequences of the decline in hemlock 4800 years ago in three Southern Ontario lakes. Hydrobiologia 143: 217–225.CrossRefGoogle Scholar
  9. Boudreau, S. A. & N. D. Yan, 2003. The differing crustacean zooplankton communities of Canadian Shield lakes with and without the nonindigenous zooplanktivore Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences 60: 1307–1313.CrossRefGoogle Scholar
  10. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 26–35.Google Scholar
  11. Chapman, L. J. & D. F. Putnam, 1984. The Physiography of Southern Ontario. Special vol. 2, Ontario Geological Survey, Sudbury, Ontario.Google Scholar
  12. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. Journal of Paleolimnology 3: 195–241.Google Scholar
  13. Chengalath, R. & B. J. Hann, 1981a. Two new species of Alona (Chydoridae, Cladocera) from western Canada. Canadian Journal of Zoology 59: 377–389.Google Scholar
  14. Chengalath, R. & B. J. Hann, 1981b. A new Species of Chydorus (Cladocera: Chydoridae) from Ontario Canada). Transactions of the American Microscopical Society 100: 229–238.CrossRefGoogle Scholar
  15. Cooke, S. L., C. E. Williamson, B. R. Hargreaves & D. P. Morris, 2006. Beneficial and detrimental interactive effects of dissolved organic matter and ultraviolet radiation on zooplankton in a transparent lake. Hydrobiologia 568: 15–28.CrossRefGoogle Scholar
  16. Currie, D. J., P. Dilworth-Christie & F. Chapleau, 1999. Assessing the strength of top-down influences on plankton abundance in unmanipulated lakes. Canadian Journal of Fisheries and Aquatic Sciences 56: 427–436.CrossRefGoogle Scholar
  17. De Melo, R. & P. D. N. Hebert, 1994. A taxonomic re-evaluation of the North American Bosminidae. Canadian Journal of Zoology 72: 1808–1825.Google Scholar
  18. Dillon, P. J. & L. A. Molot, 2005. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron and total phosphorus: The Dorset, Ontario study, 1978–1998. Journal of Geophysical Research 110, G01002, doi: 10.1029/2004JG000003.
  19. Flössner, D. & K. Kraus, 1977. On the variability and taxonomy of Pleuroxus denticulatus Birge (Cladocera: Chydoridae). Journal of the Fisheries Research Board of Canada 34: 463–476.Google Scholar
  20. Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue der gesamten Hydrobiologie 44: 27–50.CrossRefGoogle Scholar
  21. Frey, D. G., 1962. Cladocera from the Eemian Interglacial of Denmark. Journal of Paleontology 36: 1133–1154.Google Scholar
  22. Frey, D. G., 1965. Differentiation of Alona costata Sars from two related species (Cladocera, Chydoridae). Crustaceana 8: 159–173.Google Scholar
  23. Frey, D. G., 1980. On the plurality of Chydorus sphaericus (O.F. Müller) (Cladocera, Chydoridae), and the designation of a neotype from Sjaelso, Denmark. Hydrobiologia 69: 83–123.CrossRefGoogle Scholar
  24. Frey, D. G., 1985. A new species of the Chydorus sphaericus group (Cladocera, Chydoridae) from western Montana. Internationale Revue der Gesamten Hydrobiologie 70: 3–20.CrossRefGoogle Scholar
  25. Frey, D. G., 1986. Cladoceran analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons, New York: 667–692.Google Scholar
  26. Frey, D. G., 1987. The taxonomy and biogeography of the Cladocera. Hydrobiologia 145: 5–17.CrossRefGoogle Scholar
  27. Girard, R. E., B. J. Clark, N. D. Yan, R. A. Reid, S. M. David, R. Ingram & J. D. Findeis, 2007. History of chemical, physical and biological sampling methods, sampling locations and lake morphometry for the Dorset Environmental Science Centre (1973 – 2005). Ontario Ministry of the Environment Technical Report Series 2006.Google Scholar
  28. Glew, J., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.CrossRefGoogle Scholar
  29. Glew, J., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.CrossRefGoogle Scholar
  30. Glew, J., 1991. Miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 5: 285–287.CrossRefGoogle Scholar
  31. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, New York: 253–295.Google Scholar
  32. Greenaway, P., 1985. Calcium balance and moulting in the Crustacea. Biological Reviews 60: 425–454.CrossRefGoogle Scholar
  33. Guilizzoni, P., A. Marchetto, A. Lami, A. Brauer, L. Vigliotti, S. Musazzi, L. Langone, M. Manca, F. Lucchini, N. Calanchi, E. Dinelli & A. Mordenti, 2006. Records of environmental and climatic changes during the late Holocene from Svalbard: palaeolimnology of Kongressvatnet. Journal of Paleolimnology 36: 325–351.CrossRefGoogle Scholar
  34. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.Google Scholar
  35. Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences 53: 1–17.CrossRefGoogle Scholar
  36. Hann, B. J., 1981. Occurrence and distribution of littoral Chydoridae (Crustacea, Cladocera) in Ontario, Canada, and taxonomic notes on some species. Canadian Journal of Zoology 59: 1465–1474.Google Scholar
  37. Hann, B. J., 1982. Two new species of Eurycercus (Bullatifrons) from eastern North America (Chydoridae, Cladocera). Taxonomy, ontogeny, and biology. Internationale Revue der Gesamten Hydrobiologie 67: 585–610.Google Scholar
  38. Hann, B. J., P. R. Leavitt & P. S. S. Chang, 1994. Cladocera community response to experimental eutrophication in Lake 227 as recorded in laminated sediments. Canadian Journal of Fisheries and Aquatic Sciences 51: 2312–2321.Google Scholar
  39. Havas, M., 1985. Aluminum bioaccumulation and toxicity to Daphnia magna in soft water at low pH. Canadian Journal of Fisheries and Aquatic Sciences 42: 1741–1748.CrossRefGoogle Scholar
  40. Hebert, P. D. N., 1995. The Daphnia of North America: An illustrated fauna. Macromedia CD ROM. University of Guelph, Guelph, Ontario, Canada.Google Scholar
  41. Heegaard, E., A. Lotter & H. Birks, 2006. Aquatic biota and the detection of climate change: Are there consistent aquatic ecotones? Journal of Paleolimnology 35: 507–518.CrossRefGoogle Scholar
  42. Hessen, D. O., B. A. Faafeng & T. Andersen, 1995. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences 52: 733–742.CrossRefGoogle Scholar
  43. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.CrossRefGoogle Scholar
  44. Holt, C. A., N. D. Yan & K. M. Somers, 2003. pH 6 as the threshold to use in critical load modeling for zooplankton community change with acidification in lakes of south-central Ontario: accounting for morphometry and geography. Canadian Journal of Fisheries and Aquatic Sciences 60: 151–158.CrossRefGoogle Scholar
  45. Jeffries, D. S. & W. R. Snyder, 1983. Geology and geochemistry of the Muskoka-Haliburton study area. Ontario Ministry of Environment, Data Report DR 83/2.Google Scholar
  46. Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwater Biology 35: 115–127.CrossRefGoogle Scholar
  47. Jeppesen, E., J. P. Jensen, S. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.CrossRefGoogle Scholar
  48. Jeppesen E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  49. Jeziorski, A. & N. D. Yan, 2006. Species identity and aqueous calcium concentrations as determinants of calcium concentrations of freshwater crustacean zooplankton. Canadian Journal of Fisheries and Aquatic Sciences 63: 1007–1013.CrossRefGoogle Scholar
  50. Keller, W., N. D. Yan, K. E. Holtze & J. R. Pitblado, 1990. Inferred effects of lake acidification on Daphnia galeata mendotae. Environmental Science & Technology 24: 1259–1261.CrossRefGoogle Scholar
  51. Keller, W. & M. Conlon, 1994. Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 2424–2434.CrossRefGoogle Scholar
  52. Keller, W. & N. D. Yan, 1998. Biological recovery from lake acidification: zooplankton communities as a model of patterns and processes. Restoration Ecology 6: 364–375.CrossRefGoogle Scholar
  53. Keller, W., J. M. Gunn & N. D. Yan, 1999. Acid rain – perspectives on lake recovery. Journal of Aquatic Ecosystem Stress and Recovery 6: 207–216.CrossRefGoogle Scholar
  54. Keller, W., N. D. Yan, K. M. Somers & J. H. Heneberry, 2002. Crustacean zooplankton communities in lakes recovering from acidification. Canadian Journal of Fisheries and Aquatic Sciences 59: 726–735.CrossRefGoogle Scholar
  55. Kerfoot, W. C., 1977. Implications of copepod predation. Limnology and Oceanography 22: 316–325.CrossRefGoogle Scholar
  56. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.CrossRefGoogle Scholar
  57. Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.CrossRefGoogle Scholar
  58. Korhola, A. & M. Rautio, 2001. 2. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 5–41.Google Scholar
  59. Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladoceran-lake depth transfer model. Journal of Paleolimnology 34: 175–190.CrossRefGoogle Scholar
  60. Korovchinsky, N. M., 1992. Sididae & Holopediidae. Guides to the identification of the microinvertebrates of the continental waters of the world, 3. SPB Academic Publishers, The Hague.Google Scholar
  61. Locke, A., 1991. Zooplankton responses to acidification: a review of laboratory bioassays. Water, Air, and Soil Pollution 60: 135–148.CrossRefGoogle Scholar
  62. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.CrossRefGoogle Scholar
  63. Megard, R. O., 1967. Three new species of Alona (Cladocera, Chydoridae) from the United States. International Revue der gesamten Hydrobiologie 52: 37–50.CrossRefGoogle Scholar
  64. Neary, B. P., P. J. Dillon, J. R. Munro & B. J. Clark, 1990. The acidification of Ontario lakes: an assessment of their sensitivity and current status with respect to biological damage. Ontario Ministry of the Environment, Dorset, Ontario.Google Scholar
  65. Paterson, M. J., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.CrossRefGoogle Scholar
  66. Pennak, R. W., 1989. Freshwater Invertebrates of the United States, 3rd edition. John Wiley, New York, N.Y., U.S.A.Google Scholar
  67. Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.CrossRefGoogle Scholar
  68. Ramcharan, C. W., D. J. McQueen, E. Demers, S. A. Popiel, A. M. Rocchi, N. D. Yan, A. H. Wong & K. D. Hughes, 1995. A comparative approach to determining the role of fish predation in structuring limnetic ecosystems. Archive für Hydrobiologie 133: 389–416.Google Scholar
  69. Roff, J. C. & R. E. Kwiatkowski, 1977. Zooplankton and zoobenthos communities of selected northern Ontario lakes of different acidities. Canadian Journal of Zoology 55: 899–911.Google Scholar
  70. Sakuma, M. T., A. Hanazato, A. Saji & R. Nakazato, 2004. Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17–23.CrossRefGoogle Scholar
  71. Sarmaja-Korjonen, K., M. Nyman, S. Kultti & M. Väliranta, 2006. Palaeolimnological development of Lake Njargajavri, northern Finnish Lapland, in a changing Holocene climate and environment. Journal of Paleolimnology 35: 65–81.CrossRefGoogle Scholar
  72. Schartau, A. K. L., B. Walseng & E. Snucins, 2001. Correlation between microcrustaceans and environmental variables along an acidification gradient in Sudbury, Canada. Water, Air, and Soil Pollution 130: 1325–1330.CrossRefGoogle Scholar
  73. Schindler, D. W., T. M. Frost, K. H. Mills, P. S. S. Chang, I. J. Davies, L. Findlay, D. F. Malley, J. A. Shearer, M. A. Turner, P. G. Garrison, C. J. Watras, K. Webster, J. M. Gunn, P. L. Brezonik & W. A. Swenson, 1991. Comparisons between experimentally- and atmospherically-acidified lakes during stress and recovery. Proceedings of the Royal Society of Edinburgh, Section B: Biology 97: 193–227.Google Scholar
  74. Skjelkvale, B. A., J. L. Stoddard, D. S. Jeffries, K. Tørseth, T. Høgåsen, J. Bowman, J. Mannio, D. T. Monteith, R. Mosello, M. Rogora, D. Rzychon, J. Vesely, J. Wieting, A. Wilander & A. Worsztynowicz, 2005. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution 137: 165–176.PubMedCrossRefGoogle Scholar
  75. Smirnov, N. N., 1974. Fauna of the U.S.S.R., Crustacea. Vol. 1: Chydoridae. Israel Program for Scientific Translations, Jerusalem.Google Scholar
  76. Smirnov, N .N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the World. SPB Academic Publishing, Amsterdam.Google Scholar
  77. Smol, J. P. & M. M. Boucherle, 1985. Postglacial changes in algal and cladoceran assemblages in Little Round Lake, Ontario. Archiv für Hydrobiologie 103: 25–49.Google Scholar
  78. Smol, J. P., 2002. Pollution of Lakes and Rivers: a Paleoenvironmental Perspective. Oxford University Press Inc., New York.Google Scholar
  79. Sprules, W. G., 1975. Midsummer crustacean zooplankton communities in acid-stressed lakes. Journal of the Fisheries Research Board of Canada 32: 389–395.Google Scholar
  80. St. Jacques, J.-M., M. S. V. Douglas, N. Price, N. Drakulic & C. P. Gubala, 2005. The effect of fish introductions on the diatom and cladoceran communities of Lake Opeongo, Ontario, Canada. Hydrobiologia 549: 99–113.CrossRefGoogle Scholar
  81. Stevenson, J. R., 1985. Dynamics of the integument. In Bliss, D. E. & L. H. Mantel (eds), The Biology of Crustacea, Vol. 9: Integument, pigments and hormonal processes. Academic Press, New York: 1–42.Google Scholar
  82. Stoddard, J. L., D. S. Jeffries, A. Lükewille, T. A. Clair, P. J. Dillon, C. T. Driscoll, M. Forsius, M. Johannessen, J. S. Kahl, J. H. Kellogg, A. Kemp, J. Mannio, D. T. Monteith, P. S. Murdoch, A. Rebsdorf, B. L. Skjelkvale, M. P. Stainton, T. Traaen, H. van Dam, K. E. Webster, J. Wieting & A. Wilander, 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575–578.CrossRefGoogle Scholar
  83. Strecker, A. L., S. E. Arnott, N. D. Yan & R. Girard, 2006. The effect of Bythotrephes predation on zooplankton species richness throughout the ice-free season. Canadian Journal of Fisheries and Aquatic Sciences 63: 2126–2136.CrossRefGoogle Scholar
  84. Sweetman, J. N. & J. P. Smol, 2006. Patterns in the distribution of cladocerans (Crustacea: Branchiopoda) in lakes across a north-south transect in Alaska, USA. Hydrobiologia 553: 277–291.CrossRefGoogle Scholar
  85. Systat Software, Inc., 2006. SigmaPlot 10.0 User’s Guide: Richmond, CA, USA.Google Scholar
  86. Taylor, B. E., 1980. Size-selective predation on zooplankton. In Kerfoot, W. C. (ed.), Evolution and ecology of zooplankton communities. American Society of Limnology and Oceanography Special Symposium 3, University Press of New England, Hanover: 377–387.Google Scholar
  87. Taylor, D., C. Dalton, M. Leira, P. Jordan, G. Chen, L. León-Vintró, K. Irvine, H. Bennion & T. Nolan, 2006. Recent histories of six productive lakes in the Irish Ecoregion based on multiproxy palaeolimnological evidence. Hydrobiologia 571: 237–259.CrossRefGoogle Scholar
  88. Taylor, D. J., C. R. Ishikane & R. A. Haney, 2002. The systematics of Holarctic Bosminids and a revision that reconciles molecular and morphological evolution. Limnology and Oceanography 47: 1486–1495.Google Scholar
  89. ter Braak, C. J. F. & P. S. Šmilauer, 2002. CANOCO 4.5 Reference Manual and CanoDraw for Windows, User’s Guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, NY.Google Scholar
  90. Tremel, B., S. E. Frey, N. D. Yan, K. M. Somers & T. W. Pawson, 2000. Habitat specificity of littoral Chydoridae (Crustacea, Branchiopoda, Anomopoda) in Plastic Lake, Ontario, Canada. Hydrobiologia 432: 195–205.CrossRefGoogle Scholar
  91. Wærvågen, S. B., N. A. Rukke & D. O. Hessen, 2002. Ca content of crustacean zooplankton and its potential role in the species distribution. Freshwater Biology 47: 1866–1878.CrossRefGoogle Scholar
  92. Walseng, B. & L. R. Karlsen, 2001. Planktonic and littoral microcrustaceans as indices of recovery in limed lakes in SE Norway. Water, Air, and Soil Pollution 130: 1313–1318.CrossRefGoogle Scholar
  93. Walseng, B. & A. K. L. Schartau, 2001. Crustacean communities in Canada and Norway: comparison of species along a pH gradient. Water, Air & Soil Pollution 130: 1319–1324.CrossRefGoogle Scholar
  94. Watmough, S. A., J. Aherne, M. C. Eimers & P. J. Dillon, 2007. Acidification at Plastic Lake, Ontario: has 20 years made a difference? Water, Air and Soil Pollution: Focus 7: 301–306.CrossRefGoogle Scholar
  95. Williamson, C. E., B. R. Hargreaves, P. S. Orr & P. A. Lovera, 1999. Does UV play a role in changes in predation and zooplankton community structure in acidified lakes? Limnology and Oceanography 44: 774–783.Google Scholar
  96. Wissel, B., W. J. Boeing & C. W. Ramcharan, 2003. Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnology and Oceanography 48: 1965–1976.CrossRefGoogle Scholar
  97. Witty, L. M., 2004. Practical guide to identifying freshwater crustacean zooplankton. Cooperative Freshwater Ecology Unit, Department of Biology, Laurentian University, Sudbury, Ontario, Canada.Google Scholar
  98. Yan, N. D., W. Keller, K. M. Somers T. W. Pawson & R. E. Girard, 1996. Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 1301–1327.CrossRefGoogle Scholar
  99. Yan, N. D., A. Pérez-Fuentetaja, C. W. Ramcharan, D. J. McQueen, E. Demers & J. Rusak. 2001a. Changes in the crustacean zooplankton communities of Mouse and Ranger Lakes – Part 6 of the Dorset food web piscivore manipulation project. Archiv für Hydrobiologie, Special Issues in Advanced Limnology 56: 127–150.Google Scholar
  100. Yan, N. D., A. Blukacz, W. G. Sprules, P. K. Kindy, D. Hackett, R. E. Girard & B. J. Clark, 2001b. Changes in zooplankton and the phenology of the spiny water flea, Bythotrephes, following its invasion of Harp Lake, Ontario, Canada. Canadian Journal of Fisheries and Aquatic Sciences 58: 2341–2350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Anna M. DeSellas
    • 1
    • 3
    Email author
  • Andrew M. Paterson
    • 2
  • Jon N. Sweetman
    • 1
    • 4
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Ontario Ministry of the EnvironmentDorset Environmental Science CentreDorsetCanada
  3. 3.Lake of the Woods Water Sustainability Foundation & Ontario Ministry of the EnvironmentDorset Environmental Science CentreDorsetCanada
  4. 4.Parks CanadaWestern & Northern Services CentreWinnipegCanada

Personalised recommendations