Hydrobiologia

, Volume 595, Issue 1, pp 9–26 | Cite as

Global diversity of aquatic macrophytes in freshwater

  • P. A. Chambers
  • P. Lacoul
  • K. J. Murphy
  • S. M. Thomaz
FRESHWATER ANIMAL DIVERSITY ASSESSMENT

Abstract

Aquatic macrophytes are aquatic photosynthetic organisms, large enough to see with the naked eye, that actively grow permanently or periodically submerged below, floating on, or growing up through the water surface. Aquatic macrophytes are represented in seven plant divisions: Cyanobacteria, Chlorophyta, Rhodophyta, Xanthophyta, Bryophyta, Pteridophyta and Spermatophyta. Species composition and distribution of aquatic macrophytes in the more primitive divisions are less well known than for the vascular macrophytes (Pteridophyta and Spermatophyta), which are represented by 33 orders and 88 families with about 2,614 species in c. 412 genera. These c. 2,614 aquatic species of Pteridophyta and Spermatophyta evolved from land plants and represent only a small fraction (∼1%) of the total number of vascular plants. Our analysis of the numbers and distribution of vascular macrophytes showed that whilst many species have broad ranges, species diversity is highest in the Neotropics, intermediate in the Oriental, Nearctic and Afrotropics, lower in the Palearctic and Australasia, lower again in the Pacific Oceanic Islands, and lowest in the Antarctic region. About 39% of the c. 412 genera containing aquatic vascular macrophytes are endemic to a single biogeographic region, with 61–64% of all aquatic vascular plant species found in the Afrotropics and Neotropics being endemic to those regions. Aquatic macrophytes play an important role in the structure and function of aquatic ecosystems and certain macrophyte species (e.g., rice) are cultivated for human consumption, yet several of the worst invasive weeds in the world are aquatic plants. Many of the threats to fresh waters (e.g., climate change, eutrophication) will result in reduced macrophyte diversity and will, in turn, threaten the faunal diversity of aquatic ecosystems and favour the establishment of exotic species, at the expense of native species.

Keywords

Aquatic macrophyte Aquatic weeds Macroalgae Diversity Distribution Composition Lakes Rivers 

References

  1. APG [Angiosperm Phylogeny Group] II, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399–436. More recent updates published on the Internet; http://www.mobot.org/MOBOT/research/APweb/welcome.html. [Accessed April 11 2007].Google Scholar
  2. Arber, A., 1920. Water Plants: A Study of Aquatic Angiosperms. University Press, Cambridge.Google Scholar
  3. Beger, H., 1932. Familie Callitrichaceae. In von Kirchner, O., E. Loew & C. Schroter (eds) Lebensgeschichte der Blutenpflanzen Mitteleuropas III: 3. E. Ulnier, Stuttgart.Google Scholar
  4. Byers, E. J., K. Cuddington, C. G. Jones, T. S. Talley, A. Hastings, J. G. Lambrinos, J. A. Crooks & W. G. Wilson, 2006. Using ecosystem engineers to restore ecological systems. Trends in Ecology and Evolution 21: 493–500.PubMedCrossRefGoogle Scholar
  5. Chambers, P. A., & E. E. Prepas, 1994. Nutrient dynamics in riverbeds: the impact of sewage effluent and aquatic macrophytes. Water Research 28: 453–464.CrossRefGoogle Scholar
  6. Chambers, P. A., R. E. DeWreede, E. A. Irlandi, & H. Vandermeulen, 1999. Management issues in aquatic macrophyte ecology: a Canadian perspective. Canadian Journal of Botany 77: 471–487.CrossRefGoogle Scholar
  7. Chapman, R. L., & D. A. Waters, 2002. Green algae and land plants – an answer at last? Journal of Phycology 38: 237–240.CrossRefGoogle Scholar
  8. Clayton, W. D., K.T. Harman & H. Williamson, (2006 onwards). GrassBase – The Online World Grass Flora. http://www.kew.org/data/grasses-db.html. [Accessed February–May 2007].
  9. Coffey, B.T., & J. S. Clayton, 1988. New Zealand waterplants: a guide to plants found in New Zealand freshwaters. Raukura Agricultural Centre, Hamilton.Google Scholar
  10. Cook, C. D. K., 1983. Aquatic plants endemic to Europe and the Mediterranean. Botanischer Jahrbücher für Systematik. Pflanzengeschichte und Pflanzengeographie 103: 539–582.Google Scholar
  11. Cook, C. D. K., 1985. Range extensions of aquatic vascular plant species. Journal of Aquatic Plant Management 23: 1–6.Google Scholar
  12. Cook, C. D. K., 1996a. Aquatic and Wetland Plants of India. Oxford University Press, New York, USA.Google Scholar
  13. Cook, C. D. K., 1996b. Aquatic Plant Book. SPB Academic Publishing, The Hague, The Netherlands.Google Scholar
  14. Cook, C. D. K., 1999. The number and kinds of embryo-bearing plants which have become aquatic: a survey. Perspectives in Plant Ecology, Evolution and Systematics 2/1: 79–102.CrossRefGoogle Scholar
  15. Cook, C. D. K., 2004. Aquatic and Wetland Plants of Southern Africa. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  16. Crow, G. E., 1993. Species diversity in aquatic angiosperms: latitudinal patterns. Aquatic Botany 44: 229–258.CrossRefGoogle Scholar
  17. Crow, G. E., & C. B. Hellquist, 2000. Aquatic and Wetland Plants of Northeastern North America. Volume 1 Pteridophytes, Gymnosperms and Angiosperms: Dicotyledons. Volume 2 Angiosperms: Monocotyledons. The University of Wisconsin Press, Madison, WI, USA.Google Scholar
  18. Darwin, C. R., 1859. On the Origin of Species by Means of Natural Selection. J. Murray, London.Google Scholar
  19. de Candolle, A., 1855. Géographie botanique raisonnée; ou, exposition des faits principaux et des lois concernant la distribution géographique des plantes de l’e´poque actuelle. 2 vols. Victor Masson, Paris.Google Scholar
  20. Denny, P., 1985. The Ecology and Management of African Wetland Vegetation. W. Junk, The Hague.Google Scholar
  21. Dibble, E. D., K. J. Killgore & S. L. Harrel, 1996. Assessment of fish-plant interactions. In Miranda L. E. & D. R. DeVries (eds), Multidimensional approaches to reservoir fisheries management. American Fisheries Society, Symposium 16, Bethesda, Maryland: 357–372.Google Scholar
  22. Dibble, E. D., S. M. Thomaz, & A. A. Padial, 2006. Spatial complexity measured at a multi-scale in three aquatic plant species. Journal of Freshwater Ecology 21: 239–247.Google Scholar
  23. Engelhardt, K. A. M., & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.PubMedCrossRefGoogle Scholar
  24. FAO (Food and Agriculture Organization of the United Nations), 2006. FAOSTAT. Published on the Internet; http://faostat.fao.org/ [Accessed June 22 2007].
  25. Feild, T. S., & N. C. Arens, 2007. The ecophysiology of early angiosperms. Plant, Cell and Environment 30: 291–309.PubMedCrossRefGoogle Scholar
  26. Feldmann, T., & P. Nõges, 2007. Factors controlling macrophyte distribution in large, shallow Lake Võrtsjärv. Aquatic Botany 87: 15–21.CrossRefGoogle Scholar
  27. Friis, E. M., K. R. Pedersen, & P. R. Crane, 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357–360.PubMedCrossRefGoogle Scholar
  28. Govaerts, R., M. Ruhsam, L. Andersson, E. Robbrecht, D. Bridson, A. Davis, I. Schanzer & B. Sonké, 2007a. World Checklist of Rubiaceae. The Board of Trustees of the Royal Botanic Gardens, Kew. Published on the Internet; http://www.kew.org/wcsp/rubiaceae [Accessed February–May 2007].
  29. Govaerts, R., M. Ruhsam, L. Andersson, E. Robbrecht, D. Bridson, A. Davis, I. Schanzer, & B. Sonké, 2007b. World Checklist of Monocotyledons. The Board of Trustees of the Royal Botanic Gardens, Kew. Published on the Internet; http://www.kew.org/wcsp/monocots [Accessed February–May 2007].
  30. GRIN (Germplasm Resources Information Network). 2007. Published on the Internet; http://www.ars-grin.gov/ [Accessed February–May 2007].
  31. Halloy, S. R. P., 1981. La presión de anhidrido carbónico como limitante altitudinal de las plantas. Lilloa 35: 159–167.Google Scholar
  32. Halloy, S. R. P., 1983. El límite superior de aridez, límite de vegetación y el problema de los lagos, nevés y glaciares activos en el ‘‘Núcleo Arido’’ de la Cordillera Andina. Actas 1era Reunión Grupo Periglacial Argentino, Mendoza. Anales 83, IANIGLA, 5: 91–108.Google Scholar
  33. Halloy S. R. P., A. Seimon K. Yager & A. Tupayachi Herrera, 2005. Multidimensional (climate, biodiversity, socio-economics, agriculture) context of changes in land use in the Vilcanota watershed, Peru. In Spehn E. M., M. Liberman Cruz & C. Kőrner (eds), Land Use Changes and Mountain Biodiversity. Boca Raton, Florida: CRC Press: 323–337.Google Scholar
  34. Harrel, S. L., & E. D. Dibble, 2001. Foraging efficiency of juvenile bluegill (Lepomis macrochirus) among different vegetated habitats. Environmental Biology of Fishes 62: 441–453.CrossRefGoogle Scholar
  35. Hutchinson, G. E., 1975. A Treatise on Limnology, Vol. 3. Limnological botany. Wiley, New York.Google Scholar
  36. IUCN, 2004. IUCN Red List of Threatened Species. Published on the internet http://www.iucnredlist.org. [Accessed 15 August 2007] .
  37. The International Plant Names Index, 2004. Published on the Internet http://www.ipni.org [Accessed February–May 2007].
  38. Irgang B. E. & C. V. S. Gastal Júnior, 2003. Problemas taxonômicos e distribuição geográfica de macrófitas aquáticas do sul do Brasil. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas. Eduem, Maringá: 163–169.Google Scholar
  39. Jacobsen, D., & E. Terneus, 2001. Aquatic macrophytes in cool aseasonal and seasonal streams: a comparison between Ecuadorian highland and Danish lowland streams. Aquatic Botany 71: 281–295.CrossRefGoogle Scholar
  40. Jones, J. I., W. Li, & S. C. Maberly, 2003. Area, altitude and aquatic plant diversity. Ecography 26: 411–420.CrossRefGoogle Scholar
  41. Kirk, J. T. O., 1996. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.Google Scholar
  42. Kozhova, O. M., & L. R. Izmestéva, 1998. Lake Baikal: Evolution and Biodiversity. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  43. Kühn, F. & G. Rohmeder, 1943. Estudio Fisiográfico de las Sierras de Tucumán. Monografías del Instituto de Estudios Geográficos de la Universidad Nacional de Tucumán, 3, Tucumán.Google Scholar
  44. Lachavanne, J. B., 1985. The influence of accelerated eutrophication on the macrophytes of Swiss lakes: abundance and distribution. Verhandlungen Internationale Vereinigung Limnologie 22: 2950–2955.Google Scholar
  45. Lacoul, P., 2004. Aquatic Macrophyte Distribution in Response to Physical and Chemical Environment of the Lakes Along an Altitudinal Gradient in the Himalayas, Nepal. Ph.D. Thesis. Dalhousie University, Halifax, Canada.Google Scholar
  46. Lacoul, P., & B. Freedman, 2006a. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquatic Botany 84: 3–16.CrossRefGoogle Scholar
  47. Lacoul, P., B. Freedman, 2006b. Recent observation of a proliferation of Ranunculus trichophyllus Chaix. in high-altitude lakes of the Mount Everest region. Arctic, Antarctic, and Alpine Research 38: 394–398.CrossRefGoogle Scholar
  48. Lemieux C., C. Otis, & M. Turmel, 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403: 649–652.PubMedCrossRefGoogle Scholar
  49. Les, D. H., D. J. Crawford, R. T. Kimball, M. L. Moody, & E. Landoltk, 2003. Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. International Journal of Plant Sciences 164: 917–932.CrossRefGoogle Scholar
  50. Maberly, S. C., & T. V. Madsen, 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology 29: 393–405.CrossRefGoogle Scholar
  51. McCourt, R. M., C. F. Delwiche, & K. G. Karol, 2004. Charophyte algae and land plant origins. Trends in Ecology and Evolution 19: 661–666.PubMedCrossRefGoogle Scholar
  52. McLaughlin, E. G., 1974, Autecological studies of three species of Callitriche native in California. Ecological Monographs 44: 1–16.CrossRefGoogle Scholar
  53. Missouri Botanical Garden, 2007. VAST (VAScular Tropicos) nomenclatural database. Published on the internet http://www.mobot.mobot.org/W3T/Search/vast.html. [Accessed February–May 2007].
  54. Mitamura, O., Y. Seike, K. Kondo, N. Goto, K. Anbutsu, T. Akatsuka, M. Kihira, T. Qung, & T.M. Nishimura, 2003. First investigation of ultraoligotrophic alpine Lake Puma Yumco in the pre-Himalayas, China. Limnology 4: 167–175.CrossRefGoogle Scholar
  55. Murphy, K. J., 2002. Plant communities and plant diversity in softwater lakes of Northern Europe. Aquatic Botany 73: 287–324.CrossRefGoogle Scholar
  56. Murphy K. J., G. Dickinson, S. M. Thomaz, L. M. Bini, K. Dick, K. Greaves, M. Kennedy, S. Livingstone, H. McFerran, J. Milne, J. Oldroyd, & R. Wingfield, 2003. Aquatic plant communities and predictors of diversity in a sub-tropical river floodplain: the Upper Rio Paraná, Brazil. Aquatic Botany 77: 257–276.CrossRefGoogle Scholar
  57. Nakajima, T., 1994. Lake Biwa. Ergebnisse der Limnologie 44: 43–54.Google Scholar
  58. Payne, A. I., 1986. The Ecology of Tropical Lakes and Rivers. John Wiley, New York.Google Scholar
  59. Pieterse A. H., 1990. Introduction (Chapter 1). In Pieterse A. H., & K. J. Murphy (eds), Aquatic Weeds. Oxford University Press, Oxford, UK: 3–16.Google Scholar
  60. Pieterse, A. H., & K. J. Murphy. 1993. Aquatic weeds, 2nd ed. Oxford University Press, Oxford, UK.Google Scholar
  61. Pombert, J-F, C. Otis, C. Lemieux, & M. Turmel, 2005. The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insight into the branching order of Chlorophyte lineages. Molecular Biology and Evolution 22: 1903–1918.PubMedCrossRefGoogle Scholar
  62. Preston, C. D., & J. M. Croft, 1997. Aquatic Plants in Britain and Ireland. Botanical Society of the British Isles, London, UK.Google Scholar
  63. Raven, J. A., L. L. Handley, J. J. MacFarlane, S. McInroy, L. McKenzie, J.H. Richards, & G. Samuelsson, 1988. The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: a review with new data on Eriocaulon decangulare L. New Phytologist 108: 125–148.CrossRefGoogle Scholar
  64. Raven, P. H., & D. I. Axelrod, 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539–673.CrossRefGoogle Scholar
  65. Rennie, M. D., & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.CrossRefGoogle Scholar
  66. Ritter, N. P., 2000. Biodiversity and phytogeography of Bolivia’s wetland flora. Ph.D. thesis, University of New Hampshire, USA (also updates at the Neoaquatica website: http://www.botanize.com/).
  67. Rørslett, B., 1991. Principal determinants of aquatic macrophyte richness in northern European lakes. Aquatic Botany 39, 173–193.CrossRefGoogle Scholar
  68. Sand-Jensen, K., 1998. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biology 39: 663–679.CrossRefGoogle Scholar
  69. Sanderson, M. J., 2003. Molecular data from 27 proteins do not support a Precambrian origin of land plants. American Journal of Botany 90: 954–956.Google Scholar
  70. Santamaria, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.CrossRefGoogle Scholar
  71. Schotsman, H. D., 1954. A taxonomic spectrum of the section Eu-Callitriche in the Netherlands. Acta Botanica Neerlandica 3: 313–384.Google Scholar
  72. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold Publishers, London.Google Scholar
  73. Seimon, A., S. R. P. Halloy, & T. A. Seimon, 2007. Recent observation of a proliferation of Ranunculus trichophyllus Chaix. in high-altitude lakes of the Mount Everest region: Comment. Arctic, Antarctic and Alpine Research 39: 340–341.CrossRefGoogle Scholar
  74. Tappan, H., 1980. The Paleobiology of Plant Protists. W.H. Freeman and Co., San Francisco, USA.Google Scholar
  75. Turmel, M., C. Otis, & C. Lemieux, 2006. The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Molecular Biology and Evolution 23: 1324–1338.PubMedCrossRefGoogle Scholar
  76. Wehr J.D., 2003. Brown algae. In Wehr J.D. & R. G. Sheath (eds), Freshwater Algae of North America. Academic Press, San Diego, USA: 757–773.Google Scholar
  77. Wellman, C. H., P. L. Osterloff, & U. Mohiuddin, 2003. Fragments of the earliest land plants. Nature 425: 282–285.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • P. A. Chambers
    • 1
  • P. Lacoul
    • 2
  • K. J. Murphy
    • 3
  • S. M. Thomaz
    • 4
  1. 1.Environment CanadaBurlingtonCanada
  2. 2.Department of BiologyDalhousie UniversityHalifaxCanada
  3. 3.Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, Graham Kerr BuildingUniversity of GlasgowGlasgowUK
  4. 4.Universidade Estadual de MaringáNupeliaBrazil

Personalised recommendations