, Volume 598, Issue 1, pp 219–228 | Cite as

Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga

  • Yunjung Park
  • Kyoung-Woo Je
  • Kyungyong Lee
  • Sang-Eun Jung
  • Tae-Jin Choi
Primary research paper


Eight bacterial strains identified as P1, P2, Y1, Y2, W1, W2, G, and R were isolated from a long-term laboratory culture of the green alga Chlorella ellipsoidea. Although it is unknown how these bacterial strains have been maintained with the C. ellipsoidea culture, all appeared to promote the growth of C. ellipsoidea. Co-inoculation of each bacterial strain with C. ellipsoidea resulted in 0.5–3 times greater algal growth than that of C. ellipsoidea alone. The most effective bacterium (i.e., strain P1) was selected and further characterized. Biochemical analysis and transmission electron microscopy revealed that strain P1 is closely related to the genus Brevundimonas. Sequence analysis of the 16S rRNA of strain P1 showed 99.9 and 99.4% nucleotide sequence identity to that of B. nasdae and B. vesicularis, respectively. In addition to the growth promotion of C. ellipsoidea by strain P1, the growth of strain P1 was also significantly enhanced by co-culturing with C. ellipsoidea, indicating a symbiotic relationship between the bacterium and alga. Scanning electron microscopy showed the direct adhesion of strain P1 cells to the surface of C. ellipsoidea cells, as well as the development of abundant crinkles on the surface of co-cultured C. ellipsoidea cells.


Chlorella ellipsoidea Brevundimonas Symbiosis Growth promotion Algae and bacteria 



We thank Dr. Jung-Hoon Yoon of KRIBB for the phylogentic analysis of B. nasdae and Dr. Hyun Woo Oh of KRIBB for the scanning electron microscopy. This research was supported by a grant (P-2004-06) from Marine Bioprocess Research Center of the Marine Bio 21 Center funded by the Ministry of Maritime Affairs & Fisheries, Republic of Korea.


  1. Agrawal, S. C. & Y. S. Sarma, 1982. Effects of nutrients present in bold’s basal medium on the green alga Stigeoclonium pascheri. Folia Microbiologica 27: 131–137.PubMedGoogle Scholar
  2. Aksu, Z., Y. Sag & T. Kutsal, 1992. The biosorption of copper (II) by Chlorella vulgaris and Zoogloea ramigera. Environmental Technology 13: 579–586.Google Scholar
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  4. Becker, E. W., 1992. Micro-algae for human and animal consumption. In Borowitzka, M. A. & L. J. Borowitzka (eds), Micro-algal Biotechnology, Cambridge University Press, Cambridge: 222–256.Google Scholar
  5. Bell, W. H., J. M. Lang & R. Mitchell, 1974. Selective stimulation of marine bacteria by algal extracellular products. The Biological Bulletin 143: 265–277.CrossRefGoogle Scholar
  6. Busse, H. J., E. B. M. Denner & W. Lubitz, 1996. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. Journal of Biotechnology 47: 3–38.PubMedCrossRefGoogle Scholar
  7. Butler, A., 1998. Acquisition and utilization of transition metal ions by marine organisms. Science 281: 207–210.PubMedCrossRefGoogle Scholar
  8. Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology and Systematics 13: 291–314.CrossRefGoogle Scholar
  9. Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren & A. G. Smith, 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 483: 90–93.CrossRefGoogle Scholar
  10. Croft, M. T., M. J. Warren & A. G. Smith, 2006. Algae need their vitamins. Eukaryotic Cell 5: 1175–1183.PubMedCrossRefGoogle Scholar
  11. De Pauw, N. & G. Persoone, 1992. Micro-algae for aquaculture. In Borowitzka, M. A. & L. J. Borowitzka (eds), Micro-algal Biotechnology, Cambridge University Press, Cambridge: 197–221.Google Scholar
  12. Doucette, G. J., E. R. McGovern & J. A. Babinchak, 1999. Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity. Journal of Phycology 35: 1447–1454.CrossRefGoogle Scholar
  13. Fukami, K., T. Nishijima & Y. Ishida, 1997. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358: 185–191.CrossRefGoogle Scholar
  14. Gonzalez, L. E. & Y. Bashan, 2000. Increased Growth of the microalga Chlorella vulgaris when co-immobilized and co-cultured in alginated beads with the plant-growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology 66: 1527–1531.PubMedCrossRefGoogle Scholar
  15. Gonzalez, L. E., R. O. Cañizares & S. Baena, 1997. Efficiency of ammonia and phosphorus removal from Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology 60: 259–262.CrossRefGoogle Scholar
  16. Guerrini, F., A. Mazzotti, L. Boni & R. Pistocchi, 1998. Bacterial–algal interactions in polysaccharide production. Aquatic Microbial Ecology 15: 247–253.CrossRefGoogle Scholar
  17. Johnson, E. A. & G. H. An, 1991. Astaxanthin from microbial sources. Critical Reviews in Biotechnology 11: 297–326.CrossRefGoogle Scholar
  18. Jones, A. K., 1982. The interaction of algae and bacteria. In Bull, A. T. & J. H. Slater (eds.), Microbial Interactions and Communities. Academic Press, New York: 189–247.Google Scholar
  19. Kang, Y. H., J. D. Kim, B. H. Kim, D. S. Kong & M. S. Han, 2005. Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. Journal of Applied Microbiology 98: 1030–1038.PubMedCrossRefGoogle Scholar
  20. Kawanura, Y., Y. Li, H. S. Liu, X. X. Huang, Z. Y. Li & T. Ezaki, 2001. Bacterial population in Russian space station “Mir”. Microbiology and Immunology 58: 819–828.Google Scholar
  21. Keshtacher-Liebson, E., Y. Hadar & Y. Chen, 1995. Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Applied and Environmental Microbiology 61: 2439–2441.Google Scholar
  22. Lau, P. S., N. F. Y. Tam & Y. S. Wong, 1997. Wastewater nutrient (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environmental Technology 18: 945–951.CrossRefGoogle Scholar
  23. Lewis, L. A. & R. M. McCourt, 2004. Green algae and the origin of land plants. American Journal of Botany 91: 1535–1556.Google Scholar
  24. Li, Y., Y. Kawamura, N. Fujiwara, T. Naka, H. Liu, X. Huang, K. Kobayashi & T. Ezaki, 2004. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. International Journal of Systematic and Evolutionary Microbiology 54: 819–825.PubMedCrossRefGoogle Scholar
  25. Lovejoy, C., J. P. Bowman & G. M. Hallegraeff, 1998. Algicidal effects of a novel marine Pseudoalteromonas isolated (Class Proteobacteria, Gamma Subdivision) on harmful algal bloom species of the genera Chatonella, Gymnodinium, and Heterosigma. Applied and Environmental Microbiology 64: 2806–2813.PubMedGoogle Scholar
  26. Mitichkin, O. V., 1995. The results of biotechnological experiments on orbital station Mir-1. In Girain, G. A. (ed.), Mir-1 Space Station, A Technical Overview. NPO Energia Ltd.: 1–161.Google Scholar
  27. Mouget, J. L., A. Dakhama, M. C. Lavoie & J. De la Noue, 1995. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiology Ecology 18: 35–44.CrossRefGoogle Scholar
  28. Novikova, N. D., 2004. Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbial Ecology 47: 127–132.PubMedCrossRefGoogle Scholar
  29. Riquelme, C. E., 1988. Interaction between microalgae and bacteria in coastal seawater. Doctoral thesis, Kyoto University, Kyoto, 92 pp.Google Scholar
  30. Riquelme, C. E., K. Fukami & Y. Ishida, 1988. Effects of bacteria on the growth of a marine diatom, Asterionella glacialis. Bulletin of Japanese Society of Microbial Ecology 3: 29–34.Google Scholar
  31. Sakata, T., 1990. Occurrence of marine Saprospira sp. possessing algicidal activity for diatoms. Nippon Suisan Gakkaishi 56: 1165.Google Scholar
  32. Sakata, T. & K. Iwamoto, 1995. Isolation of marine algicidal microorganisms on diatom double layer agar plates. Fisheries Science 61: 173–174.Google Scholar
  33. Sambrook, J. & D. W. Russell, 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. CSH Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  34. Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, E. Falsen, K. Kersters & P. DeVos, 1994. Classification of Pseudomonas diminuta Lesion and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology 44: 499–510.CrossRefGoogle Scholar
  35. Sly, L. I., T. L. Cox & T. B. Beckenham, 1999. The phylogenetic relationships of Caulobacter, Asticcacaulis and Brevundimonas species and their taxonomic implications. International Journal of Systematic and Evolutionary Microbiology 49: 483–488.Google Scholar
  36. Suminto, I. & K. Hirayama, 1996. Effects of bacterial coexistence on the growth of a marine diatom Chaetoceros gracilis. Fisheries Science 62: 40–43.Google Scholar
  37. Tam, N. F. Y., P. S. Lau & Y. S. Wong, 1994. Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Science and Technology 30: 369–374.Google Scholar
  38. Tupas, L. & I. Koike, 1990. Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater. Limnology and Oceanography 35: 1145–1155.CrossRefGoogle Scholar
  39. Watanabe, K., M. Imase, K. Sasaki, N. Ohmura, H. Saiki & H. Tanaka, 2006. Composition of the sheath produced by the green alga Chlorella sorokiniana. Letters in Applied Microbiology 42: 538–543.PubMedCrossRefGoogle Scholar
  40. Watanabe, K., N. Takihana, H. Aoyagi, S. Hanada, Y. Watanabe, N. Ohmura, H. Saiki & H. Tanaka, 2005. Symbiotic association in Chlorella culture. FEMS Microbiology Ecology 51: 187–196.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yunjung Park
    • 1
  • Kyoung-Woo Je
    • 1
  • Kyungyong Lee
    • 1
  • Sang-Eun Jung
    • 1
  • Tae-Jin Choi
    • 1
  1. 1.Department of MicrobiologyPukyong National UniversityBusanSouth Korea

Personalised recommendations