, Volume 596, Issue 1, pp 213–223 | Cite as

The effect of organic pollution on the abundance and distribution of aquatic oligochaetes in an urban water basin, Taiwan

  • Kang-Jieh Lin
  • Shao-Pin Yo


Aquatic oligochaetes are abundant in polluted areas and are, therefore, commonly used as bioindicators to study organic pollution in rivers and streams. In order to develop a species-level oligochaete biotic index to reflect the River Pollution Index (RPI) in the Taichung Water Basin in Taiwan, we conducted a systematic sampling scheme to collect aquatic oligochaetes from the sediment samples of watercourses in the Taichung Water Basin, Taiwan. We evaluated the relationships between aquatic oligochaetes and the sewage pollution using statistical methods. The distribution of aquatic oligochaetes in relation to environmental variables, such as water quality and sediment characteristics of the regional urban contaminated streams was expressed by Canonical Correspondence Analysis (CCA). We identified 17 species of aquatic oligochaetes (Annelida, Clitellata) including 3 species of Tubificidae, 13 species of Naididae, and 1 species of Enchytraeidae from the watercourses of an urban region in the Taichung Water Basin in Taiwan, during the summer and winter of 2005 and 2006. A positive correlation was found between the total abundance of aquatic oligochaetes and the RPI (r = 0.58, P < 0.05). However, only population density of the most abundant tubificid, Limnodrilus hoffmeisteri, increased with increasing RPI values and a significantly negative correlation was found between the population density of the naidid, Nais communis, and RPI values. The results of CCA indicated that certain naidids, such as Aulophorus furcatus and Allonais gwaliorensis also tolerated extremely polluted environments in upper stream or stony habitats, implying that tubificids should not be the sole representation of simple biotic indices but should also include pollution-tolerant naidids. We found that the community structure of aquatic oligochaetes was influenced by short-term variations in microhabitat rather than according to seasonal factors in our study region. The results proved that aquatic oligochaetes were sensitive enough to provide a supplement for the regional urban pollution assessment applications for biotic indicators at the species-level.


Aquatic oligochaete River pollution Multivariate analysis Habitat preferences Pollution assessment Indicator species 


  1. Armendáriz, L. C., 2000. Population dynamics of Stylaria lacustris (Linnaeus, 1767) (Oligochaeta, Naididae) in Los Talas, Argentina. Hydrobiologia 438: 217–226.CrossRefGoogle Scholar
  2. Aston, R. J., 1973. Tubificids and water quality: a review. Environmental Pollution 5: 1–10.CrossRefGoogle Scholar
  3. Blott, S. & K. Pye, 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26: 1267–1248.CrossRefGoogle Scholar
  4. Bode, R.W., M. A. Novak & L. E. Abele, 1996. Quality Assurance Work Plan for Biological Stream Monitoring in New York State. NYS Department of Environmental Conservation, Albany.Google Scholar
  5. Brinkhurst, R. O. & M. J. Wetzel, 1984. Aquatic Oligochaeta of the world: supplement: a catalogue of new freshwater species, description and revisions. Canadian Technical Report of Hydrography and Ocean Sciences 44: 1–101.Google Scholar
  6. Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic oligochaeta of the world. Oliver and Boyd, Edinburgh.Google Scholar
  7. Brinkhurst, R. O. & S. R. Gelder, 2001. Annelida: Oligochaeta, including Branchiobdellidae. In Thorp, J. H. & A. P. Covich (eds), Classification of North American Freshwater Invertebrates, 2nd edn. Academic Press, San Diego: 431–463.Google Scholar
  8. Cheng, I. J., 1995. The temporal changes in benthic abundances and sediment nutrients in a mudflat of the Chuwei Mangrove Forest, Taiwan. Hydrobiologia 295: 221–230.CrossRefGoogle Scholar
  9. Erséus, C. & H. L. Hsieh, 1997. Records of estuarine Tubificidae (Oligochaeta) from Taiwan. Species Diversity 2: 97–104.Google Scholar
  10. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data Analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  11. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  12. Hilsenhoff, W. L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7: 65–68.CrossRefGoogle Scholar
  13. Hsieh, H. L., P. L. Tsai & R. B. Chen, 1998. The benthic organism. In Chen, C. P. et al. (eds), Dynamic Affect of Pollution Remediation on Biological Phase of the Tanshui River. Environmental Protection Administration of Taiwan, Taipei, 6–18.Google Scholar
  14. Juget, J. & M. Lafont, 1994. Theoretical habitat templets, species traits, and species richness: aquatic oligochaetes in the Upper Rhône River and its floodplain. Freshwater Biology 31: 327–340.CrossRefGoogle Scholar
  15. Lafont, M., J. C. Camus & A. Rosso, 1996. Superficial and hyporheic oligochaete communities as indicators of pollution and water exchange in the River Moselle, France. Hydrobiologia 334: 147–155.CrossRefGoogle Scholar
  16. Lafont, M., 1989. Contribution à la gestion des eaux continentals: utilization des oligochètes comme descripteurs de l’état biologique et du degré de pollution des eaux et des sédiments. Thèse de Doctorat d’Etat ès Sciences, UCBL Lyon I 403p.Google Scholar
  17. Learner, M. A., G. Lochhead & B. D. Hughes, 1978. A review of the biology of British Naididae (Oligochaeta) with the emphasis on the lotic environment. Freshwater Biology 8: 357–375.CrossRefGoogle Scholar
  18. Lin, K. J., C. Y. Wu & S. P. Yo, 2005. Life history and population distribution of the tubificid worm Limnodrilus hoffmeisteri (Claparède) in the Dali River. Endemic Species Research 7: 13–29.Google Scholar
  19. Martínez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334: 73–83.CrossRefGoogle Scholar
  20. Mason, C., 1996. Organic pollution. In Mason, C. (ed.), Biology of Freshwater Pollution, 3rd edn. Longman Ltd., Essex, 83–84.Google Scholar
  21. McCune, B. & M. J. Mefford, 1999. PC-ORD: Multivariate Analysis of Ecological Data. (Ver. 4.41). MjM Software, Oregon.Google Scholar
  22. Nalepa, T. F. & A. Robertson, 1981. Screen mesh size affects estimates of macro- and meio-benthos abundance and biomass in the Great Lakes. Canadian Journal of Fisheries and Aquatic Science 38: 1027–1034.CrossRefGoogle Scholar
  23. Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherland: an evaluation of twenty years of monitoring data. Hydrobiologia 520: 127–141.CrossRefGoogle Scholar
  24. Pathiratne, A & A. Weerasundara, 2004. Bioassessment of selected inland water bodies in Sri Lanka using benthic oligochaetes with consideration of temporal variations. International Review of Hydrobiology 89: 305–316.CrossRefGoogle Scholar
  25. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Washington DC: Appendices A–D.Google Scholar
  26. Prygiel, J., A. Rosso-Darmet, M. Lafont, C. Lesniak, A. Durbec & B. Ouddane, 2000. Use of oligochaete communities for assessment of ecotoxicological risk in fine sediment of rivers and canals of the Artois-Picardie water basin (France). Hydrobiologia 410: 25–37.CrossRefGoogle Scholar
  27. Rosso, A., M. Lafont & A. Exinger, 1994. Impact of heavy metals on benthic oligochaete communities in the River Ill and its tributaries. Water Science and Technology 29: 241–248.Google Scholar
  28. Sang, Q. & C. Erséus, 1985. Ecological survey of the aquatic oligochaetes in the lower Pearl River (People’s Republic of China). Hydrobiologia 128: 39–44.CrossRefGoogle Scholar
  29. Sang, Q., 1987. Some ecological aspects of aquatic oligochaetes in the lower Pearl River (People’s Republic of China). Hydrobiologia 155: 199–208.CrossRefGoogle Scholar
  30. Schenková, J., O. Komárek & S. Zahrádková, 2001. Oligochaeta of Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–240.CrossRefGoogle Scholar
  31. Shen, H. P., S. C. Tsai & C. F. Tsai, 2005. Occurrence of the Earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania 50: 11–21.Google Scholar
  32. Slepukhina, T. D., 1984. Comparison of different methods of water quality evaluation by means of oligochaetes. Hydrobiologia 115: 183–186.CrossRefGoogle Scholar
  33. Sloreid, S. E., 1994. Oligochaete response to changes in water flow in the Dokka Delta, Lake Randsfjorden (Norway) caused by hydroelectric power development. Hydrobiologia 278: 243–249.CrossRefGoogle Scholar
  34. Strayer, D., 1990. Aquatic Oligochaeta. In Peckarsky, B. L., P. R. Fraissinet, M. A. Penton & D. J. Conklin (eds), Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, New York: 373–397.Google Scholar
  35. Timm, T., 1997. Freshwater oligochaeta of some urban watercourses in the Russian Far East. Internationale Revue der gesamten Hydrobiologie 82: 437–467.CrossRefGoogle Scholar
  36. Timm, T., 1999. Distribution of freshwater oligochaetes in the west and east coastal regions of the North Pacific Ocean. Hydrobiologia 406: 67–81.CrossRefGoogle Scholar
  37. Timm, T. & H. H. Veldhuijzen van Zanten, 2002. Freshwater Oligochaeta of North-West Europe. World Biodiversity Database CD-ROM Series. Expert Center for Taxonomic Identification, Amsterdam.Google Scholar
  38. Verdonschot, P. F. M., 1999. Micro-distribution of oligochaetes in a soft-bottomed lowland stream (Elsbeek; The Netherlands). Hydrobiologia 406: 149–163.CrossRefGoogle Scholar
  39. Verdonschot, P. F. M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia 463: 249–262.CrossRefGoogle Scholar
  40. Wilhm, J. L. & T. C. Dorris, 1968. Biological parameters for water quality criteria. BioScience 18: 477–481.CrossRefGoogle Scholar
  41. Yu, K. C., S. T. Ho, J. K. Chang & S. D. Lai, 1995. Multivariate correlation of water quality, sediment and benthic bio-community components in Ell-ren River system, Taiwan. Water, Air and Soil Pollution 84: 31–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations