, Volume 593, Issue 1, pp 27–37 | Cite as

Habitat choice in rotifera communities of three shallow lakes: impact of macrophyte substratum and season

  • Natalia Kuczyńska-Kippen
Advances in Rotifer Research


The distribution of rotifer communities between emergent (Typha angustifolia) and submerged (Chara tomentosa) vegetation and a comparatively open water zone were compared during the spring, summer and autumn seasons at three macrophyte-dominated lakes. This survey identified 107 rotifera species of which 58% of the taxonomical structure was common for the three examined lakes. Stoneworts with a more complicated spatial and morphological structure (having a much longer stem length than the narrow leaf cattail), supported higher rotifer densities. The stem length appeared to be the best predictor of all the macrophyte parameters and pH and chlorophyll a for the chemical variables, for explaining the variation of rotifer densities using the stepwise multiple forward regressions. The distribution of pelagic species did not differ between particular sites, which may have reflected the behavioural requirements of those rotifers. Some of them remained in the open water zone while others seeking an anti-predator refuge, gathered within macrophyte stands during the daytime. Moreover, there were nine Chara-associated species recorded and only one Typha-associated species was noted. The similarity of rotifer communities was most strongly influenced by particular habitat and season.


Chlorophyll a concentration  Macrophytes pH Plant stem length Rotifers Spatial distribution 


  1. Basu, B. K., J. Kalff & B. Pinel-Alloul, 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River. Freshwater Biology 45: 373–382.CrossRefGoogle Scholar
  2. Bērziņš, B. & B. Pejler, 1987. Rotifer occurrence in relation to pH. Hydrobiologia 147: 107–116.CrossRefGoogle Scholar
  3. Canfield, D. E. J., J. V. Shireman, D. E. Colle & W. T. Haller, 1984. Prediction of chlorophyll a concentrations in Florida lakes importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497–501.CrossRefGoogle Scholar
  4. Celewicz, S., M. Klimko, N. Kuczyńska-Kippen, B. Nagengast, H. Gramowska & T. Sobczyński, 2004. Wpływ zróżnicowanej struktury płatów roślinnych na zespoły planktonowe trzech płytkich jezior Wielkopolski [The influence of the differentiated structure of the macrophyte beds on the plankton communities of three shallow lakes of Wielkopolska]. Badania Fizjograficzne Nad Polską Zachodnią. Seria B – Botanika 53: 95–106.Google Scholar
  5. Celewicz-Gołdyn, S., M. Klimko & N. Kuczyńska-Kippen, submitted. The impact of macrophyte species and season in the habitat choice of phytoplankton in three shallow lakes. Oceanological and Hydrobiological Studies.Google Scholar
  6. Conde-Porcuna, J. M., 2000. Relative importance of competition with Daphnia (Cladocera) and nutrient limitation on Anuraeopsis (Rotifera) population dynamics in a laboratory study. Freshwater Biology 44: 423–430.CrossRefGoogle Scholar
  7. Crowder, L. B., E. W. Mc Collum & T. H. Martin, 1998. Changing perspectives on food web interactions in lake littoral zones. In Jeppesen E., M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, Berlin, Heidelberg, New York, 240–249.Google Scholar
  8. Degans, H. & L. De Meester, 2002. Top–down control of natural phyto- and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hypertrophic Lake Blankaart. Hydrobiologia 479: 39–49.CrossRefGoogle Scholar
  9. Diehl, S., 1992. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology 73: 1646–1661.CrossRefGoogle Scholar
  10. Diehl, S. & R. Kornijów, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen E., M. Søndergaard, & K. Christoffersen (eds.), The Structuring Role of Submerged Macrophytes in Lakes. Springer, Berlin, 24–46.Google Scholar
  11. Duggan, I. C., 2001. The ecology of periphytic rotifers. Hydrobiologia 446/447: 139–148.CrossRefGoogle Scholar
  12. Irfanullah, H. & B. Moss, 2005. Effects of pH and predation by Chaoborus larvae on the plankton of a shallow and acidic forest lake. Freshwater Biology 50: 1913–1926.CrossRefGoogle Scholar
  13. Jones, J. I., B. Moss, J. W. Eaton & J. O. Young, 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biology 43: 591–604.Google Scholar
  14. Kairesalo, T., I. Tátrai & E. Luokkanen, 1998. Impacts of waterweed (Elodea canadensis Michx) on fish-plankton interactions in the lake littoral. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 26: 1846–1851.Google Scholar
  15. Kobayashi, T., 1997. Associations between environmental variables and zooplankton body masses in a regulated Australian river. Marine and Freshwater Research 48(6): 523–529.CrossRefGoogle Scholar
  16. Koste, W, 1978. Rotatoria. Die Rädertiere Mitteleuropas. Gebrüder Borntraeger, Berlin, Stuttgart.Google Scholar
  17. Krebs, Ch. J., 2001. Ecology. The Experimental Analysis of Distribution and Abundance. Wydawnictwo Naukowe PWN, Warszawa, 734 pp.Google Scholar
  18. Kuczyńska-Kippen, N., 2006. Zooplankton structure in architecturally differentiated macrophyte habitats of shallow lakes in Wielkopolska Region, Poland. Oceanological and Hydrobiological Studies XXXV/2: 179–191.Google Scholar
  19. Kuczyńska-Kippen, N., B. Messyasz, B. Nagengast, S. Celewicz & M. Klimko, 2005. Comparative study of periphyton communities on the reed complex and Chara tomentosa in three shallow lakes of Wielkopolska area, Poland. Biologia Bratislava 60(4): 1–7.Google Scholar
  20. Kuczyńska-Kippen, N. M. & B. Nagengast, 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203–212.CrossRefGoogle Scholar
  21. Lillie, R. A. & J. Budd, 1992. Habitat architecture of Myriophyllum spicatum L. as an index to habitat quality for fish and macroinvertebrates. Journal of Freshwater Ecology 7: 113–125.Google Scholar
  22. Lodge, D. M., 1991. Herbivory on freshwater marophytes. Aquatic Botany 41: 195–224.CrossRefGoogle Scholar
  23. Margalef, R., 1957. Information theory in ecology. General Systems 3: 36–71.Google Scholar
  24. Messyasz, B. & N. Kuczyńska-Kippen, 2006. Periphytic algal communities: A comparison of Typha angustifolia L. and Chara tomentosa L. beds in three shallow lakes (West Poland). Polish Journal of Ecology 54(1): 13–24.Google Scholar
  25. Pace, M. L., J. J. Cole & S. R. Carpenter, 1998. Trophic cascades and compensation: Differential responses of microzooplankton in whole-lake experiments. Ecology 79(1): 138–152.CrossRefGoogle Scholar
  26. Persson, L. & P. Eklov, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.CrossRefGoogle Scholar
  27. Petr, T., 2000. Interactions between fish and aquatic macrophytes in inland waters. A review. FAO Fisheries Technical Papers, 185 pp.Google Scholar
  28. Radwan, S., I. Bielańska-Grajner & J. Ejsmont-Karabin, 2004. Wrotki Rotifera. Fauna słodkowodna Polski. [Rotifers Rotifera. Freshwater fauna of Poland]. Oficyna Wydawnicza Tercja, 447 pp.Google Scholar
  29. Raffaelli, D., S. Hall, C. Emes & B. Manly, 2000. Constraints on body size distributions: An experimental approach using a small-scale system. Oecologia 122: 389–398.CrossRefGoogle Scholar
  30. Savino, J. F. & R. A. Stein, 1992. Bluegill growth as modified by plant density: An exploration of underlying mechanisms. Oecologia 89: 153–160.Google Scholar
  31. Schriver, P. J., E. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: Large scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.CrossRefGoogle Scholar
  32. Scheffer, M., 2001. Ecology of Shallow Lakes. Kluwer Academic Publishers. Dordrecht, 357 pp.Google Scholar
  33. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. The Principles and Practice of Statistics and Biological Research. W.H. Freeman and Company. New York.Google Scholar
  34. Standard Methods for Examination of Water and Wastwater 1992. American Public Health Association, New York, 1137 pp.Google Scholar
  35. Sterner, R. W. & K. L. Schulz, 1998. Zooplankton nutrition: Recent progress and a reality check. Aquatic Ecology 32: 261–279.CrossRefGoogle Scholar
  36. Strickland, J. D. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, 2nd edn. Bulletin of the Fisheries Research Board of Canada, 167 pp.Google Scholar
  37. Tessier, C., A. Cattaneo, B. Pinel-Alloul & G. Galanti, 2004. Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Canada (Italy). Journal of Limnology 63(2): 190–198.Google Scholar
  38. Van de Meutter, F., R. Stoks & L. De Meester, 2005. Spatial avoidance of littoral and pelagic invertebrate predators by Daphnia. Oecologia 142: 489–499.PubMedCrossRefGoogle Scholar
  39. Van den Berg, J., H. Coops, R. Noordhuis, J. van Schie & J. Simons, 1997. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia 342/343: 143–150.CrossRefGoogle Scholar
  40. Van Dijk, G. M., 1993. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton upon Potamogeton pectinatus. Hydrobiologia 252: 143–161.CrossRefGoogle Scholar
  41. Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity madiates the foraging success of multiple predator species. Oecologia 141: 171–178.PubMedCrossRefGoogle Scholar
  42. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystem—Part 19: Land-water interface: Attached Microorganisms, Littoral Algae and Zooplankton. Academic Press, San Diego, 1006 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Water ProtectionAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations