Hydrobiologia

, Volume 593, Issue 1, pp 39–47 | Cite as

How well do single samples reflect rotifer species diversity? A test based on interannual variation of rotifer communities in Big Bend National Park (Texas, USA)

  • E. J. Walsh
  • T. Schröder
  • M. L. Arroyo
  • R. L. Wallace
Advances in Rotifer Research

Abstract

Studies of rotifer community composition and dynamics often rely on limited sampling regimes. To determine how well species richness is reflected in these studies, we examined interannual variation of rotifer species richness and monogonont community structure from 10 aquatic systems comprising four habitat types—springs, rock pools (tinajas), former cattle tanks, and artificial ponds—in Big Bend National Park (Texas, USA). Planktonic, littoral, and benthic samples were collected from all sites at about the same date for each of five summers (2001–2005). Our survey yielded 15 monogonont families including 30 genera and 84 species. Two bdelloid taxa also were designated. Species richness varied widely among these four habitats: range, 1–32; mean (±1 SD), 11.2 ± 8.0. Total Species richness in the habitats also varied considerably: springs (54 taxa) > artificial ponds (35 taxa) > tinajas (19 taxa)  > cattle tanks (15 taxa). Sessile species comprised ≈13% of the taxa in our samples. Species turnover indices (STI) of these systems indicate low overall relatedness: mean (±1 S.D.) = 85.2 ± 7.1%. The relative frequency of encounter of most taxa in the four systems was low, with 79 taxa (≈92%) having values ≤2.0%. Singleton rates were quite high, ranging from 46.7 to 71.4%, with an overall mean ≈65.1%. Most importantly, we found that both species richness and STI varied considerably among habitat type. Species richness varied by 2–10× between consecutive years and STI ranged from 64 to 89% over the entire study. Our results indicate that rotifer community composition fluctuates greatly over time, and that rotifer community structure may be more labile than is generally believed. Species richness and thus biodiversity may be dramatically underestimated using single sampling or short-term strategies that are often employed in studies of zooplankton community structure.

Keywords

Biodiversity Chihuahuan Desert Index of faunal originality Invertebrate Relative frequency of encounter Singleton rate Species turnover index Sørensen index 

Notes

Acknowledgments

We offer our sincere thanks to C. Purchase, R. Skiles, and the staff of BBNP; this research was carried out under BBNP permits BIBE-2001-SCI-0058 and BIBE-2001-SCI-0012. Invaluable field and laboratory assistance was provided D. L. Leeming, O. Moldes, J. and B. Newlin, C. Ordonez, J. Remirez, J.V. Rios-Arana, M. Salazar, M. Sigla Arana, P.L. Starkweather, N. Lannutti, R. Guerrero, M. Voss, and T. Enriquez. We thank Jolanta Ejsmont-Karabin for providing the comprehensive data on the rotifer fauna from the Great Masurian lakes (Poland). Hilary A. Smith assisted in calculating the relative frequency of encounter and IFO values and offered constructive comments on the manuscript. We also thank Koen Martens and two anonymous reviewers for their comments on the manuscript. This material is based upon work partially supported by the National Science Foundation under Grant No. 0516032, T & E, Inc., the Graduate School of UTEP, Funds for Faculty Development (Ripon College), NSF Advance #0245071 (UTEP) and grants from T.O.P. to EJW and RLW.

References

  1. Bowles, D. E., 2000. A preliminary assessment of the diversity and distribution of aquatic macroinvertebrates in Big Bend National Park, Texas. Final report to BBNP: 1–23.Google Scholar
  2. Brower, J. E., J. H. Zar & C. N. von Ende, 1998. Field and Laboratory Methods for General Ecology. WCB McGraw-Hill, Boston, Massachusetts: 1–273.Google Scholar
  3. Brune, G., 1981. Springs of Texas. Volume One. Branch Smith, Inc. Fort Worth, Texas.Google Scholar
  4. Castro, B. B., S. C. Antunes, R. Pereira, A. M. V. M. Soares & F. Gonçalves, 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543: 221–232.CrossRefGoogle Scholar
  5. Chengalath, R. & W. Koste, 1987. Rotifera from Northwestern Canada. Hydrobiologia 147: 49–56.CrossRefGoogle Scholar
  6. Cottingham, K. L., S. Glaholt & A. C. Brown, 2004. Zooplankton community structure affects how phytoplankton respond to nutrient pulses. Ecology 85: 158–171.CrossRefGoogle Scholar
  7. Cunningham, R. B. & D. B. Lindenmayer, 2005. Modeling count data of rare species: some statistical issues. Ecology 86: 1135–1142.CrossRefGoogle Scholar
  8. Dartnall, H. J. G., 1995. Rotifers, and other aquatic invertebrates, from the Larsemann Hills, Antarctica. Papers and Proceedings of the Royal Society of Tasmania 129: 17–23.Google Scholar
  9. Dartnall, H. J. G. & E. D. Hollowday, 1985. Antarctic rotifers. British Antarctic Survey Scientific Reports 100: 1–46.Google Scholar
  10. De Ridder, M., 1987. Distribution of rotifers in African fresh and inland saline waters. Hydrobiologia 147: 9–14.CrossRefGoogle Scholar
  11. De Smet, W. H., 1989. Rotifera uit Galápagoseilanden. Natuurwet. Tijdschr. 69: 110–131.Google Scholar
  12. Dinerstein, E., D. Olson, J. Atchley, C. Loucks, S. Contreras-Balderas, R. Abell, E. Inigo, E. Enkerlin, C. Williams & G. Castilleja, 2000. Ecoregion-based conservation in the Chihuahuan Desert: a biological assessment. World Wildlife Fund.Google Scholar
  13. Dumont, H. J., 1983. Biogeography of rotifers. Hydrobiologia 104: 19–30.CrossRefGoogle Scholar
  14. Dumont, H. J. & H. Segers, 1996. Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 341: 125–132.CrossRefGoogle Scholar
  15. Edmondson, W. T. & A. Litt, 1987. Conochilus in Lake Washington. Hydrobiologia 147: 157–162.CrossRefGoogle Scholar
  16. Ejsmont-Karabin, J., 1995. Rotifer occurrence in relation to age, depth and trophic state of quarry lakes. Hydrobiologia 313/314: 21–28.CrossRefGoogle Scholar
  17. Fenchel, T., G. F. Esteban & B. J. Finlay, 1997. Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80: 220–225.CrossRefGoogle Scholar
  18. Fenchel, T. & B. J. Finlay, 2004. The ubiquity of small species. Patterns of local and global diversity. Bioscience 54: 777–784.CrossRefGoogle Scholar
  19. Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryotic species. Science 296: 1061–1063.PubMedCrossRefGoogle Scholar
  20. Fontaneto, D., G. Melone & C. Ricci, 2005. Connectivity and nestedness of the meta-community structure of moss dwelling rotifers along a stream. Hydrobiologia 542: 131–136.CrossRefGoogle Scholar
  21. Fontaneto, D., G. F. Ficetola, R. Ambrosini & C. Ricci, 2006. Patterns and diversity in microscopic animals: are they comparable to those in protists or in larger animals? Global Ecology and Biogeography 15: 153–162.CrossRefGoogle Scholar
  22. Green, J., 1985. Horizontal variations in associations of zooplankton in Lake Kariba. Journal of Zoology, London 206: 225–239.CrossRefGoogle Scholar
  23. Gulati, R. D., A. L. Ooms-Wilms, O. F. R. Van Tongeren, G. Postema & K. Siewertsen, 1992. The dynamics and role of limnetic zooplankton in Loosdrecht lakes (The Netherlands). Hydrobiologia 233: 69–86.CrossRefGoogle Scholar
  24. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. García-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykänen, T. Nõges, S. Romo, S. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.CrossRefGoogle Scholar
  25. Halse, S. A., R. J. Shiel & W. D. Williams, 1998. The relationship between salinity, ionic composition and the invertebrate fauna of Lake Gregory. In Zheng M., S. H.Hurlbert & W. D.Williams (eds), Saline Lakes VI. Hydrobiologia 381: 15–29.Google Scholar
  26. Halvorsen, G., B. Dervo & K. Papinska, 2004. Zooplankton of Lake Atnsjøen 1895–1997. Hydrobiologia 521: 149–175.CrossRefGoogle Scholar
  27. Hampton, S. E., 2005. Increased niche differentiation between two Conochilus species over 33 years of climate change and food web alteration. Limnology and Oceanography 50: 421–426.CrossRefGoogle Scholar
  28. Hampton, S. E. & D. E. Schindler, 2006. Empirical evaluation of observation scale effects in community time series. Oikos 113: 424–439.CrossRefGoogle Scholar
  29. Herzig, A., 1987. The analysis of planktonic rotifer populations: a plea for long-term investigations. Hydrobiologia 147: 163–180.CrossRefGoogle Scholar
  30. Lind, O. T. & C. A. Bane, 1980. Aquatic ecosystems of Big Bend National Park: biological and chemical indicators of water quality. In Proceedings of the Second Conference on Scientific Resources in National Parks, Vol. 2. Aquatic Biology, San Francisco, CA. pp. 7–29.Google Scholar
  31. MacKenzie, D. I., J. D. Nichols, N. Sutton, K. Kawanishi & L. Bailey, 2005. Improving inferences in population studies of rare species that are detected imperfectly. Ecology 86: 1101–1113.CrossRefGoogle Scholar
  32. May, L., 1986. Rotifer sampling – A complete species list from one visit? Hydrobiologia 134: 117–120.Google Scholar
  33. May, L., 1987. Effect of incubation temperature on the hatching of rotifer resting eggs collected from sediments. Hydrobiologia 147: 335–338.CrossRefGoogle Scholar
  34. Mao, C. X. & R. K. Colwell, 2005. Estimation of species richness: mixture models, the role of rare species, and inferential challenges. Ecology 86: 1143–1153.CrossRefGoogle Scholar
  35. Muirhead, J. R., J. Ejsmont-Karabin & H. J. MacIsaac, 2006. Quantifying rotifer species richness in temperate lakes. Freshwater Biology 51: 1696–1709.CrossRefGoogle Scholar
  36. Neves, I. F., O. Rocha, K. F. Roche & A. A. Pinto, 2003. Zooplankton community structure of two marginal lakes of the River Cuiabà (Mato Grosso, Brazil) with analysis of Rotifera and Cladocera diversity. Brazilian Journal of Biology 63: 329–343.Google Scholar
  37. Olsen, D. M. & E. Dinerstein, 1998. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conservation Biology 12: 502–515.CrossRefGoogle Scholar
  38. Ortells, R., A. Gómez & M. Serra, 2003. Coexistence of cryptic rotifer species: ecological and genetic characterization of Brachionus plicatilis. Freshwater Biology 48: 2194–2202.CrossRefGoogle Scholar
  39. Persson, A., 2002. Proliferation of cryptic protists and germination of resting stages from untreated sediment samples with emphasis on dinoflagellates. Ophelia 55: 152–166.Google Scholar
  40. Quispel, A., 1998. Lourens G. M. Baas Becking (1895–1963), inspirator for many (micro)biologists. International Microbiology 1: 69–72.PubMedGoogle Scholar
  41. Segers, H., 2002. The nomenclature of the Rotifera: annotated checklist of valid family- and genus-groups names. Journal of Natural History 36: 631–640.CrossRefGoogle Scholar
  42. Segers, H. & H. J. Dumont, 1993a. Rotifera from Arabia, with descriptions of two new species. Fauna Saudi Arabia 13: 3–26.Google Scholar
  43. Segers, H. & H. J. Dumont, 1993b. Zoogeography of Pacific Ocean islands: comparison of the rotifer faunas of Easter Island and the Galápagos archipelago. Hydrobiologia 255/256: 475–480.CrossRefGoogle Scholar
  44. Segers, H. & H. J. Dumont, 1995. 102+ rotifer species (Rotifera: Monogononta) in Broa reservoir (SP., Brazil) on 26 August 1994, with the description of three new species. Hydrobiologia 316: 183–197.CrossRefGoogle Scholar
  45. Segers, H., N. Emir & J. Mertens, 1992. Rotifera from north and northeast Anatolia (Turkey). Hydrobiologia 245: 179–189.CrossRefGoogle Scholar
  46. Segers, H., D. K. Mbogo & H. J. Dumont, 1994. New Rotifera from Kenya, with a revision of the Ituridae. Zoological Journal of the Linnean Society 110: 193–206.CrossRefGoogle Scholar
  47. Shao, Z., P. Xie & Y. Zhuge, 2001. Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes. Freshwater Biology 46: 973–986.CrossRefGoogle Scholar
  48. Shiel, R. J., J. F. Costelloe, J. R. W. Reid, P. Hudson & J. Powling, 2006. Zooplankton diversity and assemblages in arid zone rivers of the Lake Eyre Basin, Australia. Marine and Freshwater Research 57: 49–60.CrossRefGoogle Scholar
  49. Siegfried, C. A., J. W. S. Quinn & J. A. Bloomfield, 1984. Lake acidification and the biology of Adirondack lakes: I. Rotifer communities. Verhandlungen Internationale Vereinigung für Limnologie 22: 549–558.Google Scholar
  50. Schmid-Araya, J. M., 1998. Small-sized invertebrates in a gravel stream: community structure and variability of benthic rotifers. Freshwater Biology 39: 25–39.CrossRefGoogle Scholar
  51. Steiner, C. F., 2005. Temporal stability of pond zooplankton assemblages. Freshwater Biology 50: 105–112.CrossRefGoogle Scholar
  52. Uku, J. N. & K. M. Mavuti, 1994. Comparataive limnology, species diversity and biomass relationship of zooplankton and phytoplankton in five freshwater lakes in Kenya. Hydrobiologia 272: 251–258.CrossRefGoogle Scholar
  53. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera: Volume 1 Biology, Ecology and Systematics. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 23 (Dumont, H.J., ed.). Kenobi Productions, Ghent, and Backhuys Publishers, Leiden.Google Scholar
  54. Wallace, R. L., E. J. Walsh, M. L. Arroyo & P. L. Starkweather, 2005. Life on the edge: rotifers from springs and ephemeral waters in the Chihuahuan Desert, Big Bend National Park (Texas, USA). Hydrobiologia 546: 147–157.CrossRefGoogle Scholar
  55. Walsh, E. J., M. L. Arroyo, T. Schröder & R. L. Wallace (2007, in press). Species richness and species turnover (complementarity) of Rotifera in selected aquatic systems of Big Bend National Park, Texas. Southwestern Naturalist.Google Scholar
  56. Worm, B. & J. E. Duffy, 2003. Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution 18: 628–632.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • E. J. Walsh
    • 1
  • T. Schröder
    • 1
  • M. L. Arroyo
    • 1
  • R. L. Wallace
    • 2
  1. 1.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA
  2. 2.Department of BiologyRipon CollegeRiponUSA

Personalised recommendations