Hydrobiologia

, Volume 595, Issue 1, pp 545–567 | Cite as

Global diversity of fish (Pisces) in freshwater

  • C. Lévêque
  • T. Oberdorff
  • D. Paugy
  • M. L. J. Stiassny
  • P. A. Tedesco
Freshwater Animal Diversity Assessment

Abstract

The precise number of extant fish species remains to be determined. About 28,900 species were listed in FishBase in 2005, but some experts feel that the final total may be considerably higher. Freshwater fishes comprise until now almost 13,000 species (and 2,513 genera) (including only freshwater and strictly peripheral species), or about 15,000 if all species occurring from fresh to brackishwaters are included. Noteworthy is the fact that the estimated 13,000 strictly freshwater fish species live in lakes and rivers that cover only 1% of the earth’s surface, while the remaining 16,000 species live in salt water covering a full 70%. While freshwater species belong to some 170 families (or 207 if peripheral species are also considered), the bulk of species occur in a relatively few groups: the Characiformes, Cypriniformes, Siluriformes, and Gymnotiformes, the Perciformes (noteably the family Cichlidae), and the Cyprinodontiformes. Biogeographically the distribution of strictly freshwater species and genera are, respectively 4,035 species (705 genera) in the Neotropical region, 2,938 (390 genera) in the Afrotropical, 2,345 (440 genera) in the Oriental, 1,844 (380 genera) in the Palaearctic, 1,411 (298 genera) in the Nearctic, and 261 (94 genera) in the Australian. For each continent, the main characteristics of the ichthyofauna are briefly outlined. At this continental scale, ichthyologists have also attempted to identify ichthyological ‘‘provinces’’ that are regions with a distinctive evolutionary history and hence more or less characteristic biota at the species level. Ichthyoregions are currently identified in each continent, except for Asia. An exceptionally high faunal diversity occurs in ancient lakes, where one of the most noteworthy features is the existence of radiations of species that apparently result from intra-lacustrine speciation. Numerous fish-species flocks have been identified in various ancient lakes that are exceptional natural sites for the study of speciation. The major threats to fish biodiversity are intense and have been relatively well documented: overexploitation, flow modification, destruction of habitats, invasion by exotic species, pollution including the worldwide phenomena of eutrophication and sedimentation, all of which are interacting.

Keywords

Fish Freshwater Distribution Diversity Ichthyoregions Global scale 

Supplementary material

10750_2007_9034_MOESM1_ESM.xls (28 kb)
ESM1 (XLS 27 kb)

References

  1. Abell, R. A., et al., 2000. Freshwater Ecoregions of North America. A Conservation Assessment. Island Press, Washington, DC.Google Scholar
  2. Allan, J. D., R. Abell, Z. Hogan, C. Revenga, B. W. Taylor, R. L. Welcomme & K. Winemiller, 2005. Overfishing of inland waters. Bioscience 55: 1041–1051.CrossRefGoogle Scholar
  3. Allen, G. R., 1989. Freshwater Fishes of Australia. TFH Publications, Neptune City, NJ, p. 240.Google Scholar
  4. Allen, G. R., 1991. Field Guide to the Freshwater Fishes of New Guinea. Christensen Research Institute, Madang, p. 268.Google Scholar
  5. Balon, E. K., 1995. Origin and domestication of the wild carp, Cyprinus carpio: From Roman gourmets to the swimming flowers. Aquaculture 129: 3–48.CrossRefGoogle Scholar
  6. Banarescu, P., 1992. Zoogeography of Fresh Waters. Vol. 2. Distribution and Dispersal of Freshwater Animals in North America and Eurasia. AULA-Verlag, Wiesbaden.Google Scholar
  7. Berra, T. M., 2001. Freshwater Fish Distribution. Academic Press.Google Scholar
  8. Briggs, J. C., 2005. The biogeography of otophysan fishes (Ostariophysi: Otophysi): A new appraisal. Journal of Biogeography 32(2): 287–294.CrossRefGoogle Scholar
  9. Bussing, W. A., 1998. Freshwater fishes of Costa Rica. International Journal of Tropical Biology 46(Suppl. 2): 1–468.Google Scholar
  10. De Vos, L. & J. Snoeks, 1994. The non-cichlid fishes of the Lake Tanganyika basin. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 44: 391–405.Google Scholar
  11. Diogo, R., 2004. Phylogeny, origin and biogeography of catfishes: Support for a Pangean origin of “modern teleosts” and re-examination of some Mesozoic pangean connections between the Gondwanan and Laurasian supercontinents. Animal Biology 54(4): 331–351.CrossRefGoogle Scholar
  12. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedCrossRefGoogle Scholar
  13. Durand, J.-D., P. G. Bianco, J. Laroche & A. Gilles, 2003. Insight into the origin of endemic Mediterranean ichthyofauna. Phylogeography of Chondrostoma genus (Teleostean, Cyprinidae). Journal of Heredity 94: 315–328.PubMedCrossRefGoogle Scholar
  14. Echelle, A. A., E. X. Caeson, A. F. Eckhelle, R. A. Van den Busche, T. E. Dowling & A. Meyer, 2005. Historical biogeography of the new-world pupfish genus Cyprinodon (Teleostei: Cyprinodontidae). Copeia 2005(2): 320–339.CrossRefGoogle Scholar
  15. Echelle, A. A. & I. L. Kornfield, 1984. Evolution of Fish Species Flocks. University of Maine at Orono Press, Orono.Google Scholar
  16. Eschmeyer, W. N. (ed.), 2005. Catalog of fishes. Updated database version of May 2005. Catalog databases as made available to FishBase in May 2005.Google Scholar
  17. Fryer, G., 1996. Endemism, speciation and adaptive radiation in great lakes. Environmental Biology of Fishes 45: 109–131.CrossRefGoogle Scholar
  18. Gayet, M. & F. J. Meunier, 1991. Firts discovery of Polypteridae Pisces, Cladistia, Polypteriformes, outside of Africa. Geobios 24(4): 463–466.CrossRefGoogle Scholar
  19. Gery, J., 1969. The freshwater fishes of South America. In Fittkau, E. J., J. Illies, H. Klinge, G. H. Schwabe & H. Sioli (eds), Biogeography and Ecology in South America. The Hague Publishers, 827–848.Google Scholar
  20. Griffiths, D., 2006. Pattern and process in the ecological biogeography of European freshwater fishes. Journal of Animal Ecology 75: 734–751.PubMedCrossRefGoogle Scholar
  21. Guégan, J. F., S. Lek & T. Oberdorff, 1998. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391: 382–384.CrossRefGoogle Scholar
  22. Harrison, I. J. & M. L. J. Stiassny, 1999. The quiet crisis: A preliminary listing of freshwater fishes of the World that are either extinct or “missing in action”. In MacPhee, R. D. E. (ed.), Extinctions in Near Time: Causes, Contexts, and Consequences. Plenum Press, New York and London, 271–331.Google Scholar
  23. Hocutt, C. H. & E. O. Wiley (eds), 1986. The Zoogeography of North American Freshwater Fishes. John Wiley and Sons, Inc., New York, 866 pp.Google Scholar
  24. Hugueny, B., 1989. West African rivers as biogeographic islands: Species richness of fish communities. Oecologia 79: 236–243.CrossRefGoogle Scholar
  25. Hugueny, B., 2003. (Macro) Ecologie des (méta) communautés: les poissons en rivière. Mémoire d’Habilitation à Diriger des Recherches (HDR). Université Lyon I, 92 pp.Google Scholar
  26. Kawanabe, H., 1996. Asian Great Lakes, especially Lake Biwa. Environmental Biology of Fishes 47: 219–234.CrossRefGoogle Scholar
  27. Kornfield, I. L. & K. E. Carpenter, 1984. The cyprinidsn of lake Lanao, Philippines: Taxonomic validity, evolutionary rates and speciation scenarios. In Echelle, A. A. & I. L. Kornfield (eds), Evolution of Fish Species Flocks. University of Maine at Orono Press, Orono, 69–84.Google Scholar
  28. Kottelat, M., 1997. European freshwater fishes. Biologia 52(5): 271.Google Scholar
  29. Kumasawa, Y., M. Yamaguchi & M. Nishida, 1999. Mitochondrial molecular clocks and the origin of teleostean biodiversity: Familial radiation of perciforms may predated the Cretaceous/Tertiary boundary. In Goldblatt, P. (ed.), The Biology of Biodiversity. Yale University Press, New Haven, 159–199.Google Scholar
  30. Lauzanne, L., 1992. Native species: The Orestias. In Dejoux, C. & A. Iltis (eds), Lake Titicaca, a Synthesis of Limnological Knowledge. Kluwer Academic Publishers, Boston, 405–419.Google Scholar
  31. Lavoué, S., M. Miya, J. G. Inoue, K. Saitoh, N. B. Ishiguro & M. Nishida, 2005. Molecular systematics of the gonorynchiform fishes (Teleostei) on whole mitogenome sequences: Implications for higher-level relationships within the Otocephala. Molecular Phylogenetics and Evolution 37(1): 165–177.PubMedCrossRefGoogle Scholar
  32. Lévêque, C., 1997. Biodiversity and Conservation: The Freshwater Fish of Tropical Africa. Cambridge University Press, 432 pp.Google Scholar
  33. Lévêque, C., E. V. Balian & K. Martens, 2005. An assessment of animal species diversity in continental waters. Hydrobiologia 542: 39–67.CrossRefGoogle Scholar
  34. Lundberg, J. C., 1998. The temporal context for the diversification of Neotropical fishes. In Malabarba, L. R., et al. (eds), Phylogeny and Classification of Neotropical Fishes. EDIPUCRS, Porto Alegre, 49–68.Google Scholar
  35. Lundberg, J. G., M. Kottelat, G. R. Smith, M. Stiassny & A. C. Gill, 2000. So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Annals Missouri Botanical Garden 87: 26–62.CrossRefGoogle Scholar
  36. M. E. A. (Millenium Ecosystem Assessment), 2005. Ecosystems and Human Well-being Synthesis. Island Press, Washinton DC.Google Scholar
  37. MacArthur, R. H., 1964. Environmental factors affecting bird species diversity. American Naturalist 98: 387–397.CrossRefGoogle Scholar
  38. MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey.Google Scholar
  39. Maitland, P. S., 2000. Freshwater Fishes of Britain and Europe. Hamlyn, London.Google Scholar
  40. Malabarba, L. R., R. R. Reis, R. P. Vari, Z. M. S. Lucena & C. A. S. Lucena, 1998. Phylogeny and Classification of Neotropical Fishes. EDIPUCRS, Porto Alegre.Google Scholar
  41. Mats, V. D., 1993. The structure and development of the Baikal Rift depression. Earth Science Review 34: 81–118.CrossRefGoogle Scholar
  42. Mayden, R. L. (ed.), 1992. Systematics, Historical Ecology, and North American Freshwater Fishes. Stanford University Press, CA, 969 pp.Google Scholar
  43. Myers, G. S., 1949. Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems. Bijdragen tot de Dierkunde 28: 315–322.Google Scholar
  44. Nagelkerke, L. A. J. & F. A. Sibbing, 1996. Reproductive segregation among Barbus intermedius complex of Lake Tana, Ethiopia. An example of intralacustrine speciation? Journal of Fish Biology 49: 1244–1266.Google Scholar
  45. Nagelkerke, L. A. J. & F. A. Sibbing, 2000. The large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia) with a description of a new species, Barbus osseensis. Netherlands Journal of Zoology 50(2): 179–214.CrossRefGoogle Scholar
  46. Nelson, J. S., 2006. Fishes of the World, 4th edn. John Wiley & Sons, Hoboken, New Jersey, 601 p.Google Scholar
  47. Oberdorff, T., J. F. Guégan & B. Hugueny, 1995. Global scale patterns in freshwater fish species diversity. Ecography 18: 345–352.CrossRefGoogle Scholar
  48. Oberdorff, T., B. Hugueny & J. F. Guégan, 1997. Evidence of historical effects on freshwater fish species diversity: Comparison between Europe and North America. Journal of Biogeography 24: 461–467.CrossRefGoogle Scholar
  49. Olden, J. D. & N. LeRoy Poff, 2004. Ecological processes driving biotic homogenization: Testing a mechanistic model using fish faunas. Ecology 85(7): 1867–1875.CrossRefGoogle Scholar
  50. Paugy, D., C. Lévêque & G. G. Teugels, 2003. Poissons d’eaux douces et saumâtres de l’Afrique de l’Ouest. Tomes 1 et 2. IRD Editions.Google Scholar
  51. Rahel, F. J., 2000. Homogenization of fish faunas across the United States. Science 288: 854–856.PubMedCrossRefGoogle Scholar
  52. Rainboth, W. J., 1991. Cyprinids of South East Asia. In Winfield, I. J. & J. S. Nelson (eds), Cyprinid Fishes: Systematics, Biology, and Exploitation. Chapman and Hall, London, 156–210. Fish and Fisheries Series 3, 667 pp.Google Scholar
  53. Reis, R. O., S. O. Kullander & C. J. Ferraris, 2003. Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre.Google Scholar
  54. Revenga, C & Y. Kura, 2003. Status and Trends of Biodiversity of Inland Water Ecosystems. Technical Series 11. Secretariat of the Convention on Biological Diversity, Montreal, Canada.Google Scholar
  55. Reyjol, Y., B. Hugueny, D. Pont, P. G. Bianco, U. Beier, N. Caiola, F. Casals, I. Cowx, A. Economou, T. Ferreira, G. Haidvogl, R. Noble, A. Sostoa, T. Vigneron & T. Virbickas, 2007. Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography 16: 65–75.CrossRefGoogle Scholar
  56. Ricklefs, R. E., 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1–15.CrossRefGoogle Scholar
  57. Roberts, T. R., 1975. Geographical distribution of African freshwater fishes. Zoological Journal of the Linnean Society of London 57(4): 249–319.CrossRefGoogle Scholar
  58. Saitoh, K., K. M. Miya, J. G. Inoue, N. B. Ishiguro & M. Nishida, 2003. Mitochondrial genomics of ostariophysan fishes: Perspectives on phylogeny and biogeography. Journal of Molecular Evolution 56: 464–472.PubMedCrossRefGoogle Scholar
  59. Sala, O. E., F. S. Chapin III, J. J. Armesto, R. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.PubMedCrossRefGoogle Scholar
  60. Schlieven, U. K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.CrossRefGoogle Scholar
  61. Schliewen, U., K. Rassmann, M. Markmann, J. Markert, T. Kocher & D. Tautz, 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology 10(6): 1471–1488.PubMedCrossRefGoogle Scholar
  62. Seehausen, O., J. J. M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811.CrossRefGoogle Scholar
  63. Sideleva, V. G., 1994. Speciation of endemic Cottoidei in Lake Baikal. Advances in Limnology 44: 441–450.Google Scholar
  64. Skelton, P. H., 2000. A Complete Guide to the Freshwater Fishes of Southern Africa. Struik Publishers, Cape Town, 395 pp.Google Scholar
  65. Snoeks, J., 2000. How well known is the ichthyiodiversity of the large East African lakes? Advances in Ecological Research 31: 17–38.Google Scholar
  66. Sparks, J. S. & M. L. J. Stiassny, 2003. Introduction to Madagascar’s freshwater fishes. In Goodman, S. M. & J. P. Benstead (eds), The Natural History of Madagascar. University of Chicago Press, Chicago, IL, USA, 849–863.Google Scholar
  67. Stiassny, M. L. J. & N. Raminosoa, 1994. The fishes of the inland waters of Madagascar. Biological diversity in African fresh- and brackish water fishes. Geographical overviews. Annales Musée royal de l'Afrique centrale, Zoology 275: 133–149.Google Scholar
  68. Stiassny, M. L. J., U. K. Schliewen & W. J. Dominey, 1992. A new species flock of cichlid fishes from Lake Bermin, Cameroon with a description of eight new species of Tilapia (Labroidei; Cichlidae). Ichthyological Exploration of Freshwaters 3(4): 311–346.Google Scholar
  69. Stiassny, M. L. J., G. G. Teugels & C. Hopkins, in press. The Fresh and Brakish Water Fishes of Lower Guinea, West-Central Africa. IRD éditions, collection Faune et Flore tropicales.Google Scholar
  70. Sullivan, J. P., J. G. Lundberg & M. Hardman, 2006. A phylogenetic analysis of the major groups of catfishes using rag1 and rag2 nuclear gene sequences. Molecular Phylogenetics and Evolution 41: 636–662.PubMedCrossRefGoogle Scholar
  71. Tedesco, P. A., T. Oberdorff, C. A. Lasso, M. Zapata & B. Hugueny, 2005. Area and history versus contemporary energy in explaining diversity patterns in tropical riverine fish. Journal of Biogeography 32: 1899–1907.CrossRefGoogle Scholar
  72. Thieme, M. L., R. Abell, M. L. J. Stiassny, P. Skelton, et al., 2005. Freshwater Ecoregions of Africa and Madagascar. A Conservation Assessment. Island Press.Google Scholar
  73. Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28(9): 1053–1089.CrossRefGoogle Scholar
  74. Vari, R. P. & L. R. Malabarba, 1998. Neotropical ichthyology: An overview. In Malabarba, L. R., R. P. Reis, et al. (eds), Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre, 1–11.Google Scholar
  75. Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of cichlid fishes from lake Victoria, East Africa. Science 300: 325–329.PubMedCrossRefGoogle Scholar
  76. Vörösmarty, C. J., C. Lévêque, C. Revenga, et al., 2006. Chapter 7 – fresh water. In Scholes, H. R. & N. Ash (eds), Ecosystems and Human Well-being. Vol. 1. Current State and Trends. Millennium Ecosystem Assessment. Island Press, Washington, 165–207.Google Scholar
  77. Wright, D. H., 1983. Species-energy theory: An extension of the species-area theory. Oikos 41: 496–506.CrossRefGoogle Scholar
  78. Yu Sherbakov, D., 1999. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. TREE 14: 92–95.PubMedGoogle Scholar
  79. Yuma, M., K. Hosoya & Y. Nagata, 1998. Distribution of the freshwater fishes of Japan: An historical overview. Environmental Biology of fishes 52: 97–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • C. Lévêque
    • 1
  • T. Oberdorff
    • 1
  • D. Paugy
    • 1
  • M. L. J. Stiassny
    • 2
  • P. A. Tedesco
    • 3
  1. 1.Institut de Recherches pour le Développement (UR-IRD 131), Muséum National d’Histoire Naturelle DMPA-USM 403ParisFrance
  2. 2.Department of IchthyologyAmerican Museum of Natural HistoryNew YorkUSA
  3. 3.UMR CNRS 5023, UR-IRD 131, Université Lyon 1Villeurbanne, CedexFrance

Personalised recommendations