Hydrobiologia

, Volume 595, Issue 1, pp 569–580 | Cite as

Global diversity of amphibians (Amphibia) in freshwater

Freshwater Animal Diversity Assessment

Abstract

This article present a review of species numbers, biogeographic patterns and evolutionary trends of amphibians in freshwater. Although most amphibians live in freshwater in at least their larval phase, many species have evolved different degrees of independence from water including direct terrestrial development and viviparity. Of a total of 5,828 amphibian species considered here, 4,117 are aquatic in that they live in the water during at least one life-history stage, and a further 177 species are water-dependent. These numbers are tentative and provide a conservative estimate, because (1) the biology of many species is unknown, (2) more direct-developing species e.g. in the Brachycephalidae, probably depend directly on moisture near water bodies and (3) the accelerating rate of species discoveries and descriptions in amphibians indicates the existence of many more, yet undescribed species, most of which are likely to have aquatic larvae. Regional endemism in amphibians is very high, with only six out of 348 aquatic genera occurring in more than one of the major biogeographic divisions used herein. Global declines threatening amphibians are known to be triggered by an emerging infectious fungal disease and possibly by climate change, emphasizing the need of concerted conservation efforts, and of more research, focused on both their terrestrial and aquatic stages.

Keywords

Amphibia Anura Urodela Gymnophiona Species diversity Evolutionary trends Aquatic species Biogeography Threats 

References

  1. Altig, R. & R. W. McDiarmid, 1999. Body plan: development and morphology. In McDiarmid, R. W. & R. Altig (eds), Tadpole: The Biology of Anuran Larvae. University of Chicago Press, Chicago: 24–51.Google Scholar
  2. AmphibiaWeb, 2005. Information on Amphibian Biology and Conservation. [web application]. Berkeley, California. AmphibiaWeb. Available: http://amphibiaweb.org/. (Accessed, 2005).Google Scholar
  3. Avise, J. C., 2000. Phylogeography. The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  4. Balinsky, J. B., 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. Journal of Experimental Zoology 215: 335–350.CrossRefGoogle Scholar
  5. Biju, S. D. & F. Bossuyt, 2003. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425: 711–714.PubMedCrossRefGoogle Scholar
  6. Blaustein, A. R., D. B. Wake & W. P. Sousa, 1994. Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology 8: 60–71.CrossRefGoogle Scholar
  7. Chippindale, P. T., A. S. Baldwin, R. M. Bonett & J. J. Wiens, 2004. Phylogenetic evidence for a major reversal of life history evolution in plethodontid salamanders. Evolution 58: 2809–2822.PubMedGoogle Scholar
  8. Daszak, P., A. A. Cunningham & A. D. Hyatt, 2003. Infectious disease and amphibian population declines. Diversity and Distributions 9: 141–150.CrossRefGoogle Scholar
  9. Dubois, A., 2004. The higher nomenclature of recent amphibians. Alytes 22: 1–14.Google Scholar
  10. Dubois, A., 2005. Developmental pathway, speciation and supraspecific taxonomy in amphibians 1. Why are there so many frog species in Sri Lanka. Alytes 22: 19–37.Google Scholar
  11. Duellman, W. E., 1993. Amphibian Species of the World: Additions and Corrections, Vol. 21. University of Kansas, Museum of Natural History, Special Publication, pp. 1–372.Google Scholar
  12. Duellman, W. E. & D. M. Hillis, 1987. Marsupial frogs (Anura: Hylidae: Gastrotheca) of the Ecuadorian Andes: resolution of taxonomic problems and phylogenetic relationships. Herpetologica 43: 141–173.Google Scholar
  13. Duellman, W. E. & L. Trueb, 1986. Biology of Amphibians. McGraw-Hill, New York.Google Scholar
  14. Faivovich, J., C. F. B. Haddad, P. C. A. Garcia, D. R. Frost, J. A. Campbell & W. C. Wheeler, 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History 294: 1–240.CrossRefGoogle Scholar
  15. Feller, A. E. & S. B. Hedges, 1998. Molecular evidence for the early history of living amphibians. Molecular Phylogenetics and Evolution 9: 509–516.PubMedCrossRefGoogle Scholar
  16. Frost, D. R. (ed.), 1985. Amphibian Species of the World. Association of Systematic Collections, Allen Press, Lawrence, Kansas.Google Scholar
  17. Frost, D. R., 2004. Amphibian Species of the World: an Online Reference. Version 3.0 (22 August, 2004). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.Google Scholar
  18. Frost, D. R., T. Grant, J. Faivovich, R. H. Bain, A. Haas, C. F. B. Hadad, R. De Sa, A. Channing, M. Wilkinson, S. C. Donnellan, C. J. Raxworthy, J. A. Campbell, B. L. Blotto, P. Moler, R. C. Drewes, R.A. Nussbaum, J. D. Lynch, D. M. Green & W. C. Wheeler, 2006. The amphibia tree of life. Bulletin of the American Museum of Natural History 297: 1–370.CrossRefGoogle Scholar
  19. Glaw, F. & J. Köhler, 1998. Amphibian species diversity exceeds that of mammals. Herpetological Review 29: 11–12.Google Scholar
  20. Glaw, F. & M. Vences, 2006. Phylogeny and genus-level classification of mantellid frogs (Amphibia, Anura). Organisms Diversity & Evolution 6: 236–253.CrossRefGoogle Scholar
  21. Hanken, J., 1999. Why are there so many new amphibian species when amphibians are declining? Trends in Ecology and Evolution 14: 7–8.PubMedCrossRefGoogle Scholar
  22. Hedges, S. B., C. A. Hass & L. R. Maxson, 1992. Caribbean biogeography: molecular evidence for dispersal in west Indian terrestrial vertebrates. Proceedings of the National Academy of Sciences of the USA. 89: 1909–1913.Google Scholar
  23. Himstedt, W., 1996. Die Blindwühlen. Neue Brehm-Bücherei, Vol. 630.Google Scholar
  24. Hoegg, S, M. Vences, H. Brinkmann & A. Meyer, 2004. Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. Molecular Biology and Evolution 21: 1188–1200.PubMedCrossRefGoogle Scholar
  25. Kosuch, J., M. Vences, A. Dubois, A. Ohler & W. Böhme, 2001. Out of Asia: mitochondrial DNA evidence for an oriental origin of tiger frogs, genus Hoplobatrachus. Molecular Phylogenetics and Evolution 21: 398–407.PubMedCrossRefGoogle Scholar
  26. Köhler, J., D. R. Vietes, R. M. Bonett, F. Hita Garcia, F. Glaw, D. Steinke & M. Vences, 2005. New amphibians and global conservation: a boost in species discoveries in a highly endangered vertebrate group. BioScience 55: 693–696.CrossRefGoogle Scholar
  27. Measey, G. J., M. Vences, R. C. Drewes, Y. Chiari, M. Melo & B. Bourles, 2007. Freshwater paths into the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. Journal of Biogeography 34: 7–20.CrossRefGoogle Scholar
  28. Meyer, A. & R. Zardoya, 2003. Recent advances in the (molecular) phylogeny of vertebrates. Annual Reviews of Ecology, Evolution and Systematics 34: 311–338.CrossRefGoogle Scholar
  29. Min, M. S., S. Y. Yang, R. M. Bonett, D. R. Vieites, R. A. Brandon & D. B. Wake, 2005. Discovery of the first Asian plethodontid salamander. Nature 435: 87–90.PubMedCrossRefGoogle Scholar
  30. Moodie, G. E. E., 1978. Observations on the life history of the caecilian Typhlonectes compressicaudus (Duméril & Bibron) in the Amazon basin. Canadian Journal of Zoology 56: 1005–1008.CrossRefGoogle Scholar
  31. Pounds, J. A., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. L. Fogden, P. N. Foster, E. LaMarca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sánchez-Azofeifa, C. J. Still & B. E. Young, 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167.PubMedCrossRefGoogle Scholar
  32. Ranvestel, A. W., K. R. Lips, C. M. Pringle, M. R. Whiles & R. J. Bixby, 2004. Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology 49: 274–285.CrossRefGoogle Scholar
  33. Roelants, K. & F. Bossuyt, 2005. Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Systematic Biology 54: 111–126.PubMedCrossRefGoogle Scholar
  34. San Mauro, D., M. Vences, M. Alcobendas, R. Zardoya & A. Meyer, 2005. Initial diversification of living amphibians predated the breakup of Pangaea. The American Naturalist 165: 590–599.PubMedCrossRefGoogle Scholar
  35. Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodriguez, D. L. Fishman & R. W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.PubMedCrossRefGoogle Scholar
  36. Vences, M. & F. Glaw, 2001. Systematic review and molecular phylogenetic relationships of the direct developing Malagasy anurans of the Mantidactylus asper group (Amphibia, Mantellidae). Alytes 19: 107–139.Google Scholar
  37. Vences, M., J. Kosuch, M. -O. Rödel, S. Lötters, A. Channing, F. Glaw & W. Böhme, 2004. Phylogeography of Ptychadena mascareniensis suggests transoceanic dispersal in a widespread African-Malagasy frog lineage. Journal of Biogeography 31: 593–601.Google Scholar
  38. Vences, M., M. Thomas, A. van der Meijden, Y. Chiari & D. R. Vieites, 2005a. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology 2: article 5.Google Scholar
  39. Vences, M., M. Thomas, R. M. Bonett & D. R. Vieites, 2005b. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Royal Society London Series B 360: 1859–1868.CrossRefGoogle Scholar
  40. Vences M., D. R. Vieites, F. Glaw, H. Brinkmann, J. Kosuch, M. Veith & A. Meyer, 2003. Multiple overseas dispersal in amphibians. Proceedings of the Royal Society of London Series B 270: 2435–2442.Google Scholar
  41. Wake, M. H., 1977. The reproductive biology of caecilians: an evolutionary perspective. In Taylor, D. H. & S. I. Guttman (eds), Reproductive Biology of Amphibians. Plemum Press, New York: 73–101.Google Scholar
  42. Wake, M. H., 1989. Phylogenesis of direct development and viviparity in vertebrates. In Wake, D. B. & G. Roth (eds), Complex Organismal Functions: Integration and Evolution in Vertebrates. John Wiley & Sons Ltd.: 235–250.Google Scholar
  43. Weldon, C., L. H. du Preez, A. D. Hyatt, R. Muller & R. Speare, 2004. The origin of the amphibian chytrid fungus. Emerging Infectious Diseases 10: 2100–2105.PubMedGoogle Scholar
  44. Wilson, A. C., L. R. Maxson & V. M. Sarich, 1974. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences of the USA 71: 2843–2847.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Division of Evolutionary Biology, Zoological InstituteTechnical University of BraunschweigBraunschweigGermany
  2. 2.Department of ZoologyHessisches Landesmuseum DarmstadtDarmstadtGermany

Personalised recommendations