Hydrobiologia

, Volume 595, Issue 1, pp 339–350 | Cite as

Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater

  • Helen M. Barber-James
  • Jean-Luc Gattolliat
  • Michel Sartori
  • Michael D. Hubbard
FRESHWATER ANIMAL DIVERSITY ASSESSMENT

Abstract

The extant global Ephemeroptera fauna is represented by over 3,000 described species in 42 families and more than 400 genera. The highest generic diversity occurs in the Neotropics, with a correspondingly high species diversity, while the Palaearctic has the lowest generic diversity, but a high species diversity. Such distribution patterns may relate to how long evolutionary processes have been carrying on in isolation in a bioregion. Over an extended period, there may be extinction of species, but evolution of more genera. Dramatic extinction events such as the K-T mass extinction have affected current mayfly diversity and distribution. Climatic history plays an important role in the rate of speciation in an area, with regions which have been climatically stable over long periods having fewer species per genus, when compared to regions subjected to climatic stresses, such as glaciation. A total of 13 families are endemic to specific bioregions, with eight among them being monospecific. Most of these have restricted distributions which may be the result of them being the relict of a previously more diverse, but presently almost completely extinct family, or may be the consequence of vicariance events, resulting from evolution due to long-term isolation.

Keywords

Ephemeroptera Bioregion Endemicity Diversity Distribution Introgression 

References

  1. Alba-Tercedor, J., 2001. Introduction to the panel discussion “The status and knowledge of Ephemeroptera”. In Dominguez, E. (ed.), Trends in Research in Ephemeroptera and Plecoptera. Kluwer Academic/Plenum Publishers, New York, 1–2.Google Scholar
  2. Alexander, C. P., 1929. Diptera of Patagonia and South Chile. Part 1. Crane flies. British Museum of Natural History, London, 240 pp.Google Scholar
  3. Beniston, M., 2006. Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562: 3–16.CrossRefGoogle Scholar
  4. Benstead, J. P., P. H. de Rham, J.-L. Gattolliat, F. M. Gibon, P. V. Loiselle, M. Sartori & J. S. Sparks, 2003. Conserving Madagascar’s freshwater biodiversity. Bioscience 53: 1101–1111.CrossRefGoogle Scholar
  5. Benstead, J. P. & C. M. Pringle, 2004. Deforestation alters the resource base and biomass of endemic stream insects in eastern Madagascar. Freshwater Biology 49: 490–501.CrossRefGoogle Scholar
  6. Brittain, J. E. & M. Sartori, 2003. Ephemeroptera. In Resh, V. H. & R. T. Cardé (eds), Encyclopedia of Insects. Academic Press, Amsterdam, 373–380.Google Scholar
  7. Brown, L. E., D. M. Hannah & A. M. Milner, 2003. Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions. Arctic Antarctic and Alpine Research 35: 313–322.CrossRefGoogle Scholar
  8. Brown, L. E., A. M. Milner & D. M. Hannah, 2006. Stability and persistence of alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 560: 159–173.CrossRefGoogle Scholar
  9. Brundin, L., 1966. Transantarctic Relationships and Their Significance as Evidenced by Chironomid Midges. Almqvist & Wiksell, Stockholm, 1–472.Google Scholar
  10. Buijse, A. D., H. Coops, M. Staras, L. H. Jans, G. J. Van Geest, R. E. Grift & B. W. Ibelings, 2002. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 47: 889–907.CrossRefGoogle Scholar
  11. Cruickshank, R. D. & K. Ko, 2003. Geology of an amber locality in Hukawng Valley, Northern Myanmar. Journal of Asian Earth Sciences 21: 441–455.CrossRefGoogle Scholar
  12. Dudgeon, D., 2000a. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Annual Review of Ecology and Systematics 31: 239–263.CrossRefGoogle Scholar
  13. Dudgeon, D., 2000b. Riverine biodiversity in Asia: a challenge for conservation biology. Hydrobiologia 418: 1–13.CrossRefGoogle Scholar
  14. Eaton, A. E., 1883–1888. A revisional monograph of recent Ephemeridae or mayflies. Transactions of the Linnean Society of London, 2nd Series, Zoology 3: 1–352.Google Scholar
  15. Edmunds, G. F., 1962. The principles applied in determining the hierarchic level of the higher categories of Ephemeroptera. Systematic Zoology 11: 22–31.CrossRefGoogle Scholar
  16. Edmunds, G. F., 1972. Biogeography and evolution of Ephemeroptera. Annual Review of Entomology 17: 21–42.CrossRefGoogle Scholar
  17. Edmunds, G. F., 1975. Phylogenetic biogeography of mayflies. Annals of the Missouri Botanical Garden 62: 251–263.CrossRefGoogle Scholar
  18. Edmunds, G. F. & W. P. McCafferty, 1988. The mayfly subimago. Annual Review of Entomology 33: 509–529.CrossRefGoogle Scholar
  19. Gattolliat, J.-L., 2004. First reports of the genus Nigrobaetis Novikova & Kluge (Ephemeroptera: Baetidae) from Madagascar and La Réunion with observations on Afrotropical biogeography. Revue Suisse de Zoologie 111: 657–669.Google Scholar
  20. Guerold, F., J.-P. Boudot, G. Jacquemin, D. Vein, D. Merlet & J. Rouiller, 2000. Macroinvertebrate community loss as a result of headwater stream acidification in the Vosges Mountains (N-E France). Biodiversity and Conservation 9: 767–783.CrossRefGoogle Scholar
  21. Harper, M. P & B. L. Peckarsky, 2005. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecological Applications 16: 612–621.CrossRefGoogle Scholar
  22. Hubbard, M. D., 2006. Available on internet at http://www.famu.org/mayfly/.
  23. Kluge, N. J., 2003. System and phylogeny of Pinnatitergaliae (Ephemeroptera). In Gaino E. (ed.), Research Update on Ephemeroptera and Plecoptera. University of Perugia, Italy, 145–152.Google Scholar
  24. Kluge, N. J., 2004. The Phylogenetic System of Ephemeroptera. Kluwer Academic Publishers, Dordrecht, 1–442.Google Scholar
  25. Kluge, N. J., D. Studemann, P. Landolt & T. Gonser, 1995. A reclassification of Siphlonuroidea (Ephemeroptera). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 68: 103–132.Google Scholar
  26. Kukalová-Peck, J., 1991. Fossil history and the evolution of hexapod structures. In Naumann, I. D. (ed.), The Insects of Australia, 2nd edn., Vol. 1. CSIRO, Melbourne University Press, Australia, 141–179.Google Scholar
  27. Malzacher, P., U. Jacob, A. Haybach & H. Reusch, 1998. Rote Liste der Eintagsfliegen (Ephemeroptera). In Naturschutz, B. F. (ed.), Rote Liste gefährdeter Tiere in Deutschland, Bonn, 264–267.Google Scholar
  28. McCafferty, W. P., 1990. Chapter 2. Ephemeroptera. In Grimaldi, D. A. (ed.), Insects from the Santana Formation, Lower Cretaceous, of Brazil. Bulletin America Museum of Natural History, 20–25.Google Scholar
  29. McCafferty, W. P., 1991. Toward a phylogenetic classification of the Ephemeroptera (Insecta): a commentary on systematics. Annals of the Entomological Society of America 84: 343–360.Google Scholar
  30. McCafferty, W. P., 1998. Ephemeroptera and the great American interchange. Journal of the North American Benthological Society 17: 1–20.CrossRefGoogle Scholar
  31. McCafferty, W. P., 1999. Biodiversity and biogeography: examples from global studies of Ephemeroptera. In Proceedings of the Symposium on Nature Conservation and Entomology in the 21st Century. The Entomological Society of Korea, 3–22.Google Scholar
  32. McCafferty, W. P., 2004. Higher classification of the burrowing mayflies (Ephemeroptera: Scapphodonta). Entomological News 115: 84–92.Google Scholar
  33. McCafferty, W. P. & G. F. Edmunds, 1979. The higher classification of the Ephemeroptera and its evolutionary basis. Annals of the Entomological Society of America 72: 5–12.Google Scholar
  34. McCafferty, W. P. & T.-Q. Wang, 2000. Phylogenetic systematics of the major lineages of Pannote mayflies (Ephemeroptera, Pannota). Transactions of the American Entomological Society 126: 9–101.Google Scholar
  35. McKee, D. & D. Atkinson, 2000. The influence of climate change scenarios on populations of the mayfly Cloeon dipterum. Hydrobiologia 441: 55–62.CrossRefGoogle Scholar
  36. Molineri, C. & E. Dominguez, 2003. Nymph and egg of Melanemerella brasiliana (Ephemeroptera: Ephemerelloidea: Melanemerellidae), with comments on its systematic position and the higher classification of Ephemerelloidea. Journal of the North American Benthological Society 22: 263–275.CrossRefGoogle Scholar
  37. Monaghan, M. T., J.-L. Gattolliat, M. Sartori, J.-M. Elouard, H. M. James, P. Derleth, O. Glaizot, F. de Moor & A. P. Vogler, 2005. Trans-oceanic and endemic origins of the small minnow mayflies (Ephemeroptera, Baetidae) of Madagascar. Proceedings of the Royal Society B 272: 1829–1836.PubMedCrossRefGoogle Scholar
  38. Ogden, T. H. & M. F. Whiting, 2003. The problem with “the Paleoptera Problem:” sense and sensitivity. Cladistics – the International Journal of the Willi Hennig Society 19: 432–442.Google Scholar
  39. Ogden, T. H. & M. F. Whiting, 2005. Phylogeny of Ephemeroptera (mayflies) based on molecular evidence. Molecular Phylogenetics and Evolution 37: 625–643.PubMedCrossRefGoogle Scholar
  40. Peters, W. L., 1988. Origins of the North American Ephemeroptera fauna, especially the Leptophlebiidae. Memoirs of the Entomological Society of Canada 144: 13–24.Google Scholar
  41. Peters, W. L. & J. G. Peters, 1980. The Leptophlebiidae of New Caledonia (Ephemeroptera). Part II. Systematics. Cahiers O.R.S.T.O.M., Series Hydrobiologie 13: 61–82.Google Scholar
  42. Peters, W. L. & J. G. Peters, 1981a. The Leptophlebiidae: Atalophlebiinae of New Caledonia (Ephemeroptera). Part III – Systematics. Revue d’Hydrobiologie Tropical 14: 233–243.Google Scholar
  43. Peters, W. L. & J. G. Peters, 1981b. The Leptophlebiidae: Atalophlebiinae of new Caledonia (Ephemeroptera). Part IV – systematics. Revue d’Hydrobiologie Tropical 14: 245–252.Google Scholar
  44. Peters, W. L., J. G. Peters & G. F. Edmunds, 1978. The Leptophlebiidae of New Caledonia (Ephemeroptera). Part I. Introduction and systematics. Cahiers de l’ORSTOM, série Hydrobiologie 12: 97–117.Google Scholar
  45. Poff, N. R., 2002. Ecological response to and management of increased flooding caused by climate change. Philosophical Transactions of the Royal Society of London A 360: 1497–1510.CrossRefGoogle Scholar
  46. Raup, D. M., 1994. The role of extinction in evolution. Proceedings of the National Academy of Sciences of the United States of America 91: 6758–6763.PubMedCrossRefGoogle Scholar
  47. Rosenberg, D. M. & V. Resh, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York, 1–488.Google Scholar
  48. Ruffieux, L., M. Sartori & G. L’Eplattenier, 1996. Palmen body: a reliable structure to estimate the number of instars in Siphlonurus aestivalis (Eaton) (Ephemeroptera: Siphlonuridae). International Journal of Insect Morphology and Embryology 25: 341–344.CrossRefGoogle Scholar
  49. Sartori, M., P. Derleth & J. L. Gattolliat, 2003. New data about the mayflies (Ephemeroptera) from Borneo. In Gaino, E. (ed.), Research Update on Ephemeroptera and Plecoptera. Perugia, University of Perugia, Italy, 403–406.Google Scholar
  50. Sartori, M. & P. Landolt, 1998. Memorandum concernant la candidature de Palingenia longicauda (Olivier, 1791) (Insecta Ephemeroptera) à son inscription en annexe de la Convention de Berne. Strasbourg, Document T-PVS (98) 15, Council of Europe, 1–9.Google Scholar
  51. Sartori, M. & A. Sartori-Fausel, 1991. Variabilité de la durée du stade subimaginal et de la fécondité chez Siphlonurus aestivalis (Eaton) (Ephemeroptera; Siphlonuridae). Revue Suisse de Zoologie 98: 717–723.Google Scholar
  52. Savage, H. M., R. W. Flowers & V. W. Porras, 2005. Rediscovery of Choroterpes atramentum in Costa Rica, type species of Tikuna new genus (Ephemeroptera: Leptophlebiidae: Atalophlebiinae), and its role in the “Great American Interchange”. Zootaxa 932: 1–14.Google Scholar
  53. Sinitshenkova, N. D., 2000. The first fossil prosopistomatid mayfly from Burmese amber (Ephemeroptera: Prosopistomatidae). Bulletin of the Natural History Museum, London (Geology) 56: 25–28.Google Scholar
  54. Staniczek, A. H., T. Bechly & G. Bechly, 2002. First fossil record of the mayfly family Baetiscidae from Baltic amber (Insecta: Ephemeroptera). Stuttgarter Beiträge zur Naturkunde B (Geologie und Paläontologie) 322: 1–11.Google Scholar
  55. Wang, T. Q. & W. P. McCafferty, 2004. Heptageniidae (Ephemeroptera) of the world. Part I: phylogenetic higher classification. Transactions of the American Entomological Society 130: 11–45.Google Scholar
  56. Wheeler, W. C., M. Whiting, Q. D. Wheeler & J. M. Carpenter, 2001. The phylogeny of the extant hexapod orders. Cladistics – The International Journal of the Willi Hennig Society 17: 113–169.CrossRefGoogle Scholar
  57. Zwick, P., 1992. Stream habitat fragmentation – a threat to biodiversity. Biodiversity and Conservation 1: 80–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Helen M. Barber-James
    • 1
    • 2
  • Jean-Luc Gattolliat
    • 3
  • Michel Sartori
    • 3
  • Michael D. Hubbard
    • 4
  1. 1.Department of Freshwater InvertebratesAlbany MuseumGrahamstownSouth Africa
  2. 2.Department of EntomologyRhodes UniversityGrahamstownSouth Africa
  3. 3.Museum of ZoologyLausanneSwitzerland
  4. 4.Laboratory of Aquatic EntomologyFlorida A & M UniversityTallahasseeUSA

Personalised recommendations