, Volume 595, Issue 1, pp 323–328 | Cite as

Global diversity of oribatids (Oribatida: Acari: Arachnida)

  • Heinrich SchatzEmail author
  • Valerie Behan-Pelletier
Freshwater Animal Diversity Assessment


Oribatid mites are primarily terrestrial. Only about 90 species (less than 1% of all known oribatid species) from 10 genera are truly aquatic, with reproduction and all stages of their life cycle living in freshwater. Adaptation to aquatic conditions evolved independently in different taxa. However, many terrestrial species can also be found in aquatic habitats, either as chance stragglers from the surrounding habitats, or from periodic or unpredictable floodings, where they can survive for long periods. In spite of their low species richness aquatic oribatids can be very abundant in different freshwater habitats as in lentic (pools, lakes, water-filled microhabitats) or flowing waters (springs, rivers, streams), mainly on submerged plants. The heavily sclerotized exoskeletons of several species enables subfossil or fossil preservation in lakes or bog sediments.


Acari  Oribatida Aquatic distribution Global diversity 


  1. Adis, J. & B. Messner, 1991. Langzeit-Überflutungsresistenz als Überlebensstrategie bei terrestrischen Arthropoden – Beispiele aus zentralamazonischen Überschwemmungsgebieten. Deutsche Entomologische Zeitschrift, Neue Folge 38: 211–223.CrossRefGoogle Scholar
  2. Baker, G. T. & D. C. Wighton, 1984. Fossil aquatic Oribatid mites (Acari, Oribatida, Hydrozetidae, Hydrozetes) from the Paleocene of South-Central Alberta, Canada. Canadian Entomologist 116: 773–775.CrossRefGoogle Scholar
  3. Balogh, J. & S. Mahunka, 1979. New taxa in the system of the Oribatida (Acari). Acta Zoologica Academiae Scientiarum Hungaricae 71: 279–290.Google Scholar
  4. Behan-Pelletier, V. M. & B. Eamer, 2007. Aquatic Acari: ecology, morphology ad behaviour. In Morales-Malacara, J. B., V. M. Behan-Pelletier, E. Ueckermann, T. M. Pérez, E. Estrada, C. Gispert & M. Badii (eds), Acarology XI: Proceedings of the International Congress. Instituto de Biología UNAM; Facultad de Ciencias, UNAM; Sociedad Latinoamericana de Acarología, México (in press).Google Scholar
  5. Bernini, F., G. Carnevale, G. Bagnoli & S. Stouge, 2002. An early Ordovician oribatid mite (Acari: Oribatida) from the island of Öland, Sweden. In Bernini, F., R. Nannelli, G. Nuzzaci & E. De Lillo (eds), Acarid Phylogeny and Evolution: Adapation in Mites and Ticks. Proceedings of the IV Symposium of the European Association of Acarologists, Siena 2000. Kluwer Academic Publishers, Dordrecht, Boston, London: 45–47.Google Scholar
  6. Bücking, J., H. Ernst & F. Siemer, 1998. Population dynamics of phytophagous mites inhabiting rocky shores – K-strategists in an extreme environment? In Ebermann, E. (ed.), Arthropod Biology: Contributions to Morphology, Ecology and Systematics. Biosystematics and Ecology Series 14: 93–143.Google Scholar
  7. Colloff, M. J. & R. B. Halliday, 1998. Oribatid Mites: a Catalogue of the Australian Genera and Species. Monographs on Invertebrate Taxonomy, Vol. 6. CSIRO Publishing, Melbourne, 224 pp.Google Scholar
  8. Deichsel, R., (2005): A morphometric analysis of the parthenogenetic oribatid mites Hydrozetes lacustris and Hydrozetes parisiensis – sister species or morphotypes? Phytophaga 14(2004): 377–382.Google Scholar
  9. Druk, A. Ja., 1982. Beetle mites of certain types of bogs in the Moscow Region. In Soil Invertebrates of the Moscow Region. Nauka Publishers, Moscow: 72–77 (in Russian).Google Scholar
  10. Erickson, J. M., 1988. Fossil oribatid mites as tools for Quarternary palaeoecologists: preservation quality, quantities, and taphonomy. Bulletin of the Buffalo Society of Natural Sciences 33: 207–226.Google Scholar
  11. Erickson, J. M., 1996. Can Palaeacarology contribute to global change research? In Mitchell, R., D. J. Horn, G. R. Needham & W. Calvin Welbourn (eds), Acarology IX – Proceedings. Ohio Biological Survey, Columbus, Ohio, vol. 1: 533–537.Google Scholar
  12. Erickson, J. M., R. B. Platt Jr. & D. H. Jennings, 2003. Holocene fossil oribatid mite biofacies as proxies of palaeohabitat at the Hiscock site, Byron, New York. Bulletin of the Buffalo Society of Natural Sciences 37: 176–189.Google Scholar
  13. Fernandez, N. A. & F. Athias-Binche, 1986. Analyse demographique d’une population d’Hydrozetes lemnae Coggi, Acarien Oribate infeode a la lentille d’eau Lemna gibba L. en Argentine. I. Methodes et techniques, demographie d’ H. lemnae comparaisons avec d’autre Oribates. Zoologisches Jahrbuch Systematik 113: 213–228.Google Scholar
  14. Grandjean, F., 1948. Sur les Hydrozetes (Acariens) de l’Europe occidentale. Bulletin du Museum national d’ Histoire naturelle 20(2): 328–335.Google Scholar
  15. Grandjean, F., 1954. Essai de classification des Oribates (Acariens). Bulletin de la Societé Zoologique de France 78(1953): 421–446.Google Scholar
  16. Grandjean, F., 1965. Complément à mon travail de 1953 sur la classification des Oribates. Acarologia 7: 713–734.Google Scholar
  17. Grandjean, F., 1969. Considérations sur le classement des Oribates. Leur division en 6 groupes majeurs. Acarologia 11: 127–153.Google Scholar
  18. Grandjean, F., 1970. Stases. Actinopiline. Rappel de ma classification des Acariens en 3 groupes majeurs. Terminologie en soma. Acarologia 11: 796–827.Google Scholar
  19. Hammer, M., 1965. Are low temperatures a species-preserving factor? Acta Univ. Lundensis, Section II 2:1–10.Google Scholar
  20. Haumann, G., 1991. Zur Phylogenie primitiver Oribatiden, Acari: Oribatida. dbv Verlag für die Technische Universität Graz, Acari: 237 pp.Google Scholar
  21. Krivolutsky, D. A., A. Ja. Druk, I. S. Ejtminaviciute, L. M. Laskova & E. Karppinen, 1990. Fossil Oribatid Mites. Mokslas Publishers, Vilnius: 109 pp. (in Russian).Google Scholar
  22. Labandeira, C. C., T. L. Phillips & R. A. Norton, 1997. Oribatid mites and the decomposition of plant tissues in paleozoic coal swamp forests. Palaios 12: 319–353.CrossRefGoogle Scholar
  23. Maraun, M., M. Heethoff, S. Scheu, R. A. Norton, G. Weigmann & R. H. Thomas, 2003. Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Experimental and Applied Acarology 29: 265–277.CrossRefGoogle Scholar
  24. Maraun, M., M. Heethoff, K. Schneider, S. Scheu, G. Weigmann, J. Cianciolo, R. H. Thomas & R. A. Norton, 2004. Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Experimental and Applied Acarology 33: 183–201.CrossRefGoogle Scholar
  25. Norton, R. A., 1984. Monophyletic groups in the Enarthronota (Sarcoptiformes). In Griffiths, D. A. & C. E. Bowman (eds), Acarology VI. Horwood, Chichester, Vol. 1: 233–240.Google Scholar
  26. Norton, R. A., 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In Houck, M. (ed.), Mites. Ecological and Evolutionary Analyses of Life-history Patterns. Chapman and Hall, New York: 99–135.Google Scholar
  27. Norton, R. A., 1998. Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Experimental Applied Acarology 22: 559–594.CrossRefGoogle Scholar
  28. Norton R. A., P. M. Bonamo, J. D. Grierson & W. A. Shear, 1988a. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontolology 62: 259–269.Google Scholar
  29. Norton, R. A., J. B. Kethley, D. E. Johnston & B. M. OConnor, 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In Wrensch, D. L. & M. A. Ebbert (eds), Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman and Hall, New York: 8–99.Google Scholar
  30. Norton, R. A. & S. C. Palmer, 1991. The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In Schuster, R. & P. W. Murphy (eds), The Acari – Reproduction, Development and Life-history Strategies. Chapman and Hall, London, New York: 107–136.Google Scholar
  31. Norton, R. A., D. D. Williams, I. D. Hogg & S. C. Palmer, 1988b. Biology of the oribatid mite Mucronothrus nasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater springbrook in Eastern Canada. Canadian Journal of Zoology 66: 622–629.CrossRefGoogle Scholar
  32. Piffl, E., 1978. Oribatei. In Illies, J. (ed.), Limnofauna Europaea, 2nd Ed., Fischer, Stuttgart, New York: 182–183.Google Scholar
  33. Pugh, P. J. A., 1996. Edaphic oribatid mites (Cryptostigmata: Acarina) associated with an aquatic moss on sub-Antarctic South Georgia. Pedobiologia 40: 113–117.Google Scholar
  34. Schatz, H., 1985. The life cycle of an alpine Oribatid mite, Oromurcia sudetica Willmann. Acarologia 26: 95–100.Google Scholar
  35. Schatz, H., 2002. Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758–2001) – Eine Analyse. Abhandlungen und Berichte des Naturkunde Museums Görlitz 74: 37–45.Google Scholar
  36. Schatz, H., 2005. Diversity and global distribution of oribatid mites – evaluation of the present state of knowledge. Phytophaga 14(2004): 485–500.Google Scholar
  37. Schatz, H., & R. Gerecke, 1996. Hornmilben (Acari, Oribatida) aus Quellen und Quellbächen im Nationalpark Berchtesgaden (Oberbayern) und in den Südlichen Alpen (Trentino – Alto Adige). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck 83: 121–144.Google Scholar
  38. Schelvis, J., 1990. The reconstruction of local environments on the basis of remains of oribatid mites (Acari: Oribatida). Journal of Archaeological Science 17: 559–572.CrossRefGoogle Scholar
  39. Schneider, K., K. Renker, S. Scheu & M. Maraun, 2005. Feeding biology of oribatid mites: a mini review. Phytophaga 14(2004): 247–256.Google Scholar
  40. Sivhed, U., & J. A. Wallwork, 1978. An early jurassic Oribatid mite from Southern Sweden. Geologiska Föreningen i Stockholm Förhandlingar 100: 65–70.Google Scholar
  41. Solhøy, T., 2001. Oribatid mites. In Smol, J. P., J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4. Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 81–104.Google Scholar
  42. Solhøy, I. W., & T. Solhøy, 2000. The fossil oribatid mite fauna (Acari, Oribatida) in late glacial and early holocene sediments in Krakenes Lake, Western Norway. Journal of Paleolimnology 23: 35–47.CrossRefGoogle Scholar
  43. Søvik, G., 2004. The biology and life history of arctic populations of the littoral mite Ameronothrus lineatus (Acari, Oribatida). Experimental and Applied Acarology 34: 3–20.CrossRefGoogle Scholar
  44. Subias, L. S., 2004. Listado sistemático, sinonímico y biogeográfico de los Ácaros Oribátidos (Acarifomes, Oribatida) del mundo (1748–2002). Graellsia 60: 3–305.Google Scholar
  45. Walter, D. E. & H. C. Proctor, 1999. Mites. Ecology, Evolution and Behaviour. CABI Publishing, Wallingford, New York, Sydney: 322 pp.Google Scholar
  46. Weigmann, G., 1997. Die Hornmilben-Fauna (Acari, Oribatida) in Auenböden des Unteren Odertals. Faunistisch-ökologische Mitteilungen 7: 319–333.Google Scholar
  47. Weigmann, G., 2005. Recovery of the oribatid mite community in a flood plain after decline due to long time inundation. Phytophaga 14(2004): 201–208.Google Scholar
  48. Weigmann, G., 2006. Hornmilben (Oribatida). Die Tierwelt Deutschlands, 76. Teil. Goecke & Evers, Keltern, 520 pp.Google Scholar
  49. Weigmann, G. & R. Deichsel, 2006. Acari: Limnic Oribatida. In Gerecke, R. (ed.), Chelicerata: Araneae, Acari I. Süßwasserfauna von Mitteleuropa, Vol. 7/2-1. Spektrum, München: 89–112.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institut für Zoologie/Ökologie, Leopold-Franzens-UniversitätInnsbruckAustria
  2. 2.Biodiversity Program, Agriculture and Agri-Food CanadaOttawaCanada

Personalised recommendations