, Volume 595, Issue 1, pp 303–315 | Cite as

Global diversity of water mites (Acari, Hydrachnidia; Arachnida) in freshwater

  • Antonio Di SabatinoEmail author
  • Harry Smit
  • Reinhard Gerecke
  • Tom Goldschmidt
  • Noriko Matsumoto
  • Bruno Cicolani


The Hydrachnidia (water mites) represent the most important group of the Arachnida in fresh water. Over 6,000 species have been described worldwide, representing 57 families, 81 subfamilies and more than 400 genera. The article analyzes extant water mite diversity and biogeography. Data on distribution and species richness of water mites are substantial but still far from complete. Many parts of the world are poorly investigated, Oriental and Afrotropical regions in particular. Moreover, information among different freshwater habitats is unbalanced with springs and interstitial waters disproportionately unrepresented. Therefore, more than 10,000 species could be reasonably expected to occur in inland waters worldwide. Based on available information, the Palaearctic region represents one of the better investigated areas with the highest number of species recorded (1,642 species). More than 1,000 species have been recorded in each of the Neotropical (1,305 species) and Nearctic regions (1,025 species). Known species richness is lower in Afrotropical (787 species) and Australasian (694 species) regions, and lowest in the Oriental region (554 species). The total number of genera is not correlated with species richness and is distinctly higher in the Neotropical (164 genera); genus richness is similar in the Palaearctic, Nearctic and Australasian regions (128–131 genera) and is lower in the Afrotropical and Oriental regions with 110 and 94 genera, respectively. A mean number of about three genera per family occur in the Palaeartic, Nearctic and Oriental while an average of more than four genera characterizes the families of Australasian and Afrotropical regions and more than five genera those of the Neotropical. Australasian fauna is also characterized by the highest percentage of endemic genera (62%), followed by Neotropical (50.6%) and Afrotropical (47.2%) regions. Lower values are recorded for the Palaearctic (26.9%), Oriental (24.4%) and Nearctic (21.4%). The Palaearctic and Nearctic have the highest faunistic similarity, some minor affinities are also evident for the generic diversification of Holarctic and Oriental families. The faunas of Southern Hemisphere bioregions are more distinct and characterized by the presence of ancient Gondwanan clades with a regional diversification particularly evident in the Neotropics and Australasia. This scenario of water mite diversity and distribution reflect the basic vicariance pattern, isolation, phylogenetic diversification, recent climatic vicissitudes and episodes of dispersal between adjacent land masses together with extant ecological factors can be evoked to explain distribution patterns at a global scale.


Biodiversity Biogeography Freshwaters Global assessment Water mites Hydrachnidia 



We wish to thank H. Proctor (Alberta, Canada) and three anonymous reviewers for their helpful comments on an earlier draft of this article. ADS wish to thank P. Vignini (L’Aquila, Italy) for her valuable help during the preparation of the manuscript. ADS and BC were in part financially supported by the Italian MIUR (ex 60%).


  1. Boulton, A. J., W. F. Humphreys & S. M. Eberhard, 2003. Imperilled subsurface waters in Australia: biodiversity, threatening processes and conservation. Aquatic Ecosystem Health & Management 6: 41–54.CrossRefGoogle Scholar
  2. Cook, D. R., 1966. The water mites of Liberia. Memoirs of the American Entomological Institute 6: III+418 pp.Google Scholar
  3. Cook, D. R., 1967. Water mites from India. Memoirs of the American Entomological Institute 9: III+411 pp.Google Scholar
  4. Cook, D. R., 1980. Studies on neotropical water mites. Memoirs of the American Entomological Institute 31: V+645 pp.Google Scholar
  5. Cook, D. R., 1983. Rheophilic and hyporheic water mites of New Zealand. Contributions of the American Entomological Institute 21: II+224 pp.Google Scholar
  6. Cook, D. R., 1986. Water mites from Australia. Memoirs of the American Entomological Institute 40: IV+568 pp.Google Scholar
  7. Cook, D. R., 1988. Water mites from Chile. Memoirs of the American Entomological Institute 42: 356.Google Scholar
  8. Cox, C. B., 2001. The biogeographic regions reconsidered. Journal of Biogeography 28: 511–523.CrossRefGoogle Scholar
  9. Dartnall, H. J. G., 2005. Freshwater invertebrates of subantarctic South Georgia. Journal of Natural History 39: 3321–3342.CrossRefGoogle Scholar
  10. Di Sabatino, A., R. Gerecke & P. Martin, 2000. The biology and ecology of lotic water mites (Hydrachnidia). Freshwater Biology 44: 47–62.CrossRefGoogle Scholar
  11. Di Sabatino, A., P. Martin, R. Gerecke & B. Cicolani, 2002. Hydrachnidia (Water mites). In Rundle S., A. Robertson & J. Schmid-Araya (eds), Freshwater Meiofauna: Biology and Ecology. Backhuys Publisher, Leiden, 105–133.Google Scholar
  12. Di Sabatino, A., B. Cicolani & R. Gerecke, 2003. Biodiversity and distribution of water mites (Acari, Hydrachnidia) in spring habitats. Freshwater Biology 48: 2163–2173.CrossRefGoogle Scholar
  13. Gerecke, R., 2004. The water mites of Madagascar (Acari: Hydrachnidia): a revised list completed by original material conserved at the Muséum national d’Histoire naturelle, Paris. Zoosystema 26: 393–418.Google Scholar
  14. Gerecke, R. & E. O. Lehmann, 2005. Towards a long term monitoring of Central European water mite faunas (Acari: Hydrachnidia and Halacaridae)—considerations on the background of data from 1900 to 2000. Limnologica 35: 45–51.Google Scholar
  15. Gerecke, R., S. B. Peck & H. E. Pehofer, 1996. The invertebrate fauna of the inland waters of the Galápagos Archipelago (Ecuador)—a limnological and zoogeographical summary. Archiv für Hydrobiologie, Supplement 107: 113–147.Google Scholar
  16. Gerecke, R., I. M. Smith & D. R. Cook, 1999. Three new species of Apheviderulix gen. nov. and proposal of Apheviderulicidae fam. nov. (Acari: Hydrachnidia: Eylaoidea). Hydrobiologia 397: 133–147.CrossRefGoogle Scholar
  17. Goldschmidt, T., 2002. The biodiversity of Neotropical water mites. In Bernini, F., R. Nannelli, G. Nuzzaci & F. de Lillo (eds), Acarid Phylogeny and Evolution. Adaptations in mites and ticks. Kluwer Academic Publishers, 91–99.Google Scholar
  18. Goldschmidt, T. & R. Gerecke, 2003. Zur Kenntnis der Wassermilbenfauna (Acari, Hydrachnidia) in Fließgewässern und Quellen auf Madagaskar. Tagungsbericht DGL Braunschweig 2002: 755–760.Google Scholar
  19. Habeeb, H., 1967. A check list of North American water-mites. Leaflets of Acadian Biology 43: 1–8.Google Scholar
  20. Harrison, A.D., 2000. The Water Mites (Acari: Hydrachnellae) of South Africa.
  21. Harvey, M. S., 1998. The Australian Water Mites. A Guide to Families and Genera. Monographs on Invertebrate Taxonomy 4. CSIRO Publishing, Collingwood.Google Scholar
  22. Jin, D., 1997. Hydrachnellae—morphology, systematics. A primary study of Chinese fauna. Guizhou Science and Technology Publishing House.Google Scholar
  23. Lundblad, O., 1941. Die Hydracarinenfauna Südbrasiliens und Paraguays. Erster Teil. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1–183.Google Scholar
  24. Lundblad, O., 1942. Die Hydracarinenfauna Südbrasiliens und Paraguays. Zweiter Teil. Kungliga Svenska Vetenskapsakademiens Handlingar 20: 1–175.Google Scholar
  25. Lundblad, O., 1943a. Die Hydracarinenfauna Südbrasiliens und Paraguays, Dritter Teil. Kungliga Svenska Vetenskapsakademiens Handlingar 20: 1–148.Google Scholar
  26. Lundblad, O., 1943b. Die Hydracarinenfauna Südbrasiliens und Paraguays, Vierter Teil. Kungliga Svenska Vetenskapsakademiens Handlingar 20: 1–171.Google Scholar
  27. Lundblad, O., 1944. Die Hydracarinenfauna Südbrasiliens und Paraguays, Fünfter Teil. Kungliga Svenska Vetenskapsakademiens Handlingar 20: 1–182.Google Scholar
  28. Lydekker, R., 1896. A Geographical History of Mammals. University Press, Cambridge.Google Scholar
  29. Mitchell, R. D., 1954. Check list of North American water-mites. Fieldiana, Zoology 35: 27–70.Google Scholar
  30. Panesar, A., 2004. Evolution in water mites (Hydrachnellae, Actinedida, Acari). A revision of the Anisitsiellidae Koenike, 1910. Bonner Zoologische Monographien 52: 1–144.Google Scholar
  31. Pugh, P. J. A. & H. J. G. Dartnall, 1994. The Acari of fresh- and brackish water habitats in the Antarctic and sub-Antartctic regions. Polar Biology 14: 401–404.CrossRefGoogle Scholar
  32. Poinar, G. O., 1985. Fossil evidence of insect parasitism by mites. International Journal of Acarology 11: 37–38.CrossRefGoogle Scholar
  33. Rosso de Ferradas B. & H. R. Fernandez, 2005. Elenco y biogeografia de los Acaros acuaticos (Acari, Parasitengona, Hydrachnidia) de Sudamerica. Graellsia, 61: 181–224.Google Scholar
  34. Simpson, G. H., 1977. Too many lines; the limits of the Oriental and Australian zoogeographic regions. Proceedings of the American Philosophical Society 121: 107–120.Google Scholar
  35. Smit, H., 2005. A review of the water mite fauna from the Australasian and Pacific region (Acari: Hydrachnidia). In Weigmann, P., G. Alberti, A. Wohltmann & S. Ragusa (eds), Acarine Biodiversity in the Natural and Human Sphere. Phytophaga 14: 525–530.Google Scholar
  36. Smith, I. M. & D. R. Cook, 1999. An assessment of global distribution patterns in water mites (Acari: Hydrachnidia) In Mitchell R., G. Needham & W. C. Welbourn (eds), Acarology IX, Vol. 2, Symposia. Ohio Biological Survey. Columbus, Ohio, 523–527.Google Scholar
  37. Smith, I. M., D. R. Cook & B. P. Smith, 2001. Water mites (Hydrachnida) and other arachnids. In Thorp J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates (2nd edition). Academic Press, San Diego, California, 551–659.Google Scholar
  38. Smith, I. M., E. E. Lindquist & V. Behan-Pelletier, 1998. Mites (Acari). In Smith, I. M. & G. G. Scudder (eds), Assessment of Species Diversity in the Montane Cordillera Ecozone. Burlington: Ecological Monitoring and Assessment Network. Available at: Scholar
  39. Sokolow, I., 1940. Hydracarina ( partie: Hydrachnellae). In: Sernow D., &T. Stackelberg (eds), Faune de l’URSS. Arachnides. Institute Zoology Academy of Science. URSS, Moscow, Leningrad, 5: 1–511.Google Scholar
  40. Tuzovskij, P. V., 1987. Morphology and Postembryonal Development of Water Mites. Nauka, Moskwa: 1–176.Google Scholar
  41. Tuzovskij, P.V., 1997. Hydrachnidia. In Tsalolikhin, S. J. (ed.), Key to Freshwater Invertebrates of Russia and Adjacent Lands. Institute Zoology Academy of Science, URSS 3: 13–35.Google Scholar
  42. Van Rensburg, C. A., 1974. A checklist of the Ethiopian water mites with notes on their distribution. Wetenskaplike Bydraes van die Potchefstroomse Universiteit vir C.H.O. Reeks B, Natuurwetenskappe 68, pp. 1–51.Google Scholar
  43. Viets, K. O., 1970. Unser Zuwachs an Kenntnissen über die aus Afrika bekannten Wassermilben (Hydrachnellae, Acari) (mit Anhang: Limnohalacaridae). Hydrobiologia, 35: 65–126.CrossRefGoogle Scholar
  44. Viets, K. O., 1987. Die Milben des Süβwassers (Hydrachnellae und Halacaridae [part.], Acari). 2. Katalog. Sonderbände des Naturwissenschaftlichen Vereins in Hamburg 8: 1–1012.Google Scholar
  45. Wiles, P. R., 2004. Water mites (Acari: Hydrachnidia) from South-East Asia, Thailand and Sulawesi Tenggara (Indonesia): descriptions of new species and new records. Journal of Natural History 38: 2153–2165.CrossRefGoogle Scholar
  46. Witte, H., 1991. Indirect sperm transfer in prostigmatic mites from a phylogenetic viewpoint. In: Schuster R., P. W. Murphy (eds), The Acari. Reproduction, Development and Life-history Strategies. Chapman and Hall, London, 137–176.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Antonio Di Sabatino
    • 1
    Email author
  • Harry Smit
    • 2
  • Reinhard Gerecke
    • 3
  • Tom Goldschmidt
    • 4
  • Noriko Matsumoto
    • 5
  • Bruno Cicolani
    • 1
  1. 1.Dipartimento di Scienze AmbientaliUniversity of L’AquilaL’AquilaItaly
  2. 2.Zoological MuseumUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.TübingenGermany
  4. 4.Zoologisches InstitutUniversity of KarlsruheKarlsruheGermany
  5. 5.Division of Biological Sciences, Graduate School of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations