, Volume 595, Issue 1, pp 195–207 | Cite as

Global diversity of copepods (Crustacea: Copepoda) in freshwater

  • Geoff A. BoxshallEmail author
  • Danielle Defaye
Freshwater Animal Diversity Assessment


The zoogeographic distributions of the 2,814 species of copepods reported from freshwater are analysed. Faunal diversity is compared between zoogeographic regions: the Palaearctic region has more than double the species richness of the next most diverse region, the Neotropical. Historical factors affecting levels of diversity are identified. More than 90% of all freshwater copepods are endemic to a single-zoogeographic region and endemic genera occur in all regions except Antarctica. Species that are not endemic to a single region include the highly vagile and cosmopolitan species occurring in four or more regions. The greatest faunal connectivity, as identified by Sørensen’s Index, is between Palaearctic and Nearctic regions, and identifies the Holarctic taxa. Key human-related issues, such as the role of copepods as vectors for human parasites and the losses caused by parasitic copepods in commercial aquaculture, are mentioned.


Zoogeography Copepods Freshwater Endemism Species richness 



We would like to thank Estelle Balian and Koen Martens, for the invitation to contribute to this volume, and Diana Galassi and an anonymous reviewer for their suggested improvements.


  1. Bayly, I. A. E., 1993. The fauna of athalassic saline waters in Australia and the Altiplano of South America: comparisons and historical perspectives. Hydrobiologia 267: 225–231.CrossRefGoogle Scholar
  2. Bayly, I. A. E., 1995. Distinctive aspects of the zooplankton of large lakes in Australasia, Antarctica and South America. Marine and Freshwater Research 46: 1109–1120.CrossRefGoogle Scholar
  3. Bayly, I. A. E, J. A. E. Gibson, B. Wagner & K. M. Swadling, 2003. Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid copepod species: Boeckella poppei and Gladioferens antarcticus. Antarctic Science 15: 439–448.CrossRefGoogle Scholar
  4. Boxshall, G. A. & T. D. Evstigneeva, 1994. The evolution of species flocks of copepods in Lake Baikal: a preliminary analysis. In: Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie, Ergebn Limnology 44: 235–245.Google Scholar
  5. Boxshall, G. A. & S. H. Halsey, 2004. An Introduction to Copepod Diversity. The Ray Society, London, 966 pp.Google Scholar
  6. Boxshall, G. A. & D. Jaume, 2000. Making waves: the repeated colonization of fresh water by copepod crustaceans. Advances in Ecological Research 31: 61–79.Google Scholar
  7. Boxshall, G. A. & E. E. Strong, 2006. An extraordinary shift in life habit in a genus of cyclopid copepods from Lake Tanganyika. Zoological Journal of the Linnean Society 146: 275–285.CrossRefGoogle Scholar
  8. Coulter, G., 1991. Lake Tanganyika and its Life. Oxford University Press, Oxford.Google Scholar
  9. Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17.Google Scholar
  10. Danielopol, D. L. & P. Pospisil, 2002. Taxonomic diversity of Crustacea Cyclopoida in the Austrian “Danube Floodplain” national park. Vie et Milieu 52: 67–75.Google Scholar
  11. Defaye, D., 1998. Description of the first Boeckella (Copepoda, Calanoida, Centropagidae) from New Caledonia. Crustaceana 71: 686–699.CrossRefGoogle Scholar
  12. Dussart, B. & D. Defaye, 1990. Répertoire Mondial Crustacés Copépodes des Eaux Intérieures. I. Harpacticoïdes. Crustaceana Supplement 16: 1–384.Google Scholar
  13. Dussart, B. & D. Defaye, 2002. World Directory of Crustacea Copepoda of Inland Waters. I – Calaniformes. Backhuys Publishers, Leiden, 276 pp.Google Scholar
  14. Dussart, B. & D. Defaye, 2006. World Directory of Crustacea Copepoda of Inland Waters. II - Cyclopiformes. Backhuys Publishers, Leiden. 354 pp.Google Scholar
  15. El-Rashidy, H., 1999. Copepods and Grey Mullets (Mugilidae). PhD Thesis, University of London.Google Scholar
  16. Frey, D. G., 1986. The non-cosmopolitanism of chydorid Cladocera; implications for biogeography and evolution. Crustacean Issues 4: 237–256.Google Scholar
  17. Galassi, D. M. P., 2001. Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453/454: 227–253.CrossRefGoogle Scholar
  18. Galassi, D. M. P., M.-J. Dole-Olivier & P. De Laurentiis, 1999. Phylogeny and biogeography of the genus Pseudectinosoma and description of P. janineae sp.n. (Crustacea, Copepoda, Ectinosomatidae). Zoologica Scripta 28: 289–303.CrossRefGoogle Scholar
  19. Ho, J.-s., 1998. Cladistics of the Lernaeidae (Cyclopoida), a major family of freshwater fish parasites. Journal of Marine Systems 15: 177–183.CrossRefGoogle Scholar
  20. Huys, R. & G. A. Boxshall, 1991. Copepod Evolution. The Ray Society, London, 468 pp.Google Scholar
  21. Kabata Z., 1979. Parasitic Copepoda of British fishes. The Ray Society, London, 468 pp.Google Scholar
  22. Karanovic, T., 2004. Subterranean Copepoda from arid Western Australia. Crustacean Monographs 3. Koninklijke Brill, Leiden, 366 pp.Google Scholar
  23. Lee, C. E., 1999. Rapid and repeated invasions of fresh water by the saltwater copepod Eurytemora affinis. Evolution 53: 1423–1434.CrossRefGoogle Scholar
  24. Lee, C. E., 2000. Global phylogeography of a cryptic species complex and reproductive isolation between genetically proximate ‘populations’. Evolution 54: 2014–2027.PubMedCrossRefGoogle Scholar
  25. Lovejoy, N. R., E. Bermingham & A. P. Martin, 1998. Marine incursion into South America. Nature 196: 421–422.CrossRefGoogle Scholar
  26. Pugh, P. J. A., H. J. G. Dartnall & S. J. McInnes, 2002. The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: biodiversity and biogeography. Journal of Natural History 36: 1047–1103.CrossRefGoogle Scholar
  27. Reid, J. W. & R. M. Pinto-Coelho, 1994. An Afro-Asian continental copepod, Mesocyclops ogunnus, found in Brazil; with a new key to the species of Mesocyclops in South America and a review of intercontinental introductions of copepods. Limnologica 24: 359–368.Google Scholar
  28. Rocha, C. E. F., 1986. Freshwater copepods of the genus Oithona Baird, 1843 from the Amazonian region (Brazil). Revista de Biologia Tropical 18: 213–220.Google Scholar
  29. Rouch, R., 1986. Copepoda: les Harpacticoïdes souterrains des eaux douces continentales. In Botosaneanu, L. (ed.), Stygofauna Mundi, E.J.Brill, Leiden, 321–355.Google Scholar
  30. Sket, B., 1999. High biodiversity in hypogean waters and its endangerment – the situation in Slovenia, the Dinaric Karst and Europe. Crustaceana 72: 767–779.CrossRefGoogle Scholar
  31. Stoch, F., 1995. The ecological and historical determinants of crustacean diversity in groundwaters, or: why are there so many species? Mémoires de Biospéologie 22: 139–160.Google Scholar
  32. Suárez-Morales, E., J. W. Reid, F. Fiers & T. M. Iliffe, 2004. Historical biogeography and distribution of the freshwater cyclopine copepods of the Yucatan Peninsula, Mexico. Journal of Biogeography 31: 1051–1063.CrossRefGoogle Scholar
  33. Thatcher, V. E., 1998. Copepods and fishes in the Brazilian Amazon. Journal of Marine Systems 15: 97–112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of ZoologyThe Natural History MuseumLondonUK
  2. 2.Département Milieux et Peuplements AquatiquesMuséum national d’Histoire naturelleParis cedex 05France

Personalised recommendations