, Volume 591, Issue 1, pp 117–134 | Cite as

Palaeolimnological evidence for the independent evolution of neighbouring terminal lakes, the Murray Darling Basin, Australia

  • Jennie Fluin
  • Peter Gell
  • Deborah Haynes
  • John Tibby
  • Gary Hancock
Salt Lakes


The estuary of the lower River Murray features a complex mosaic of lakes, coastal lagoons and interconnecting channels. The waters of these wetlands are degraded as a result of river regulation, water abstraction, salinisation, sedimentation and the recent constriction of the River mouth. Palaeolimnologial analysis of sediment cores in two wetlands reveals that salinity in the large terminal Lake Alexandrina was only moderately influenced by tidal inflow, particularly over the past ca. 2000 years. It is now largely fresh as a result of isolation by a series of barriers completed by 1940 AD. In contrast, the seaward portion of the Coorong, a back barrier coastal lagoon, was determined to be a subsaline estuary strongly influenced by marine inflows. These findings contrast somewhat with the Coorong’s current Ramsar classification as a saline lagoon. Riverine diatoms, typical of the fossil flora of Lake Alexandrina, are rare or absent in the Holocene sediments of the Coorong, other than for a short period in the late Holocene in the northernmost end of the lagoon. The palaeolimnological evidence for independent evolution of these wetlands is consistent with geomorphic evidence of a stranded, last interglacial shoreline that acted as a sill limiting the exchange of flows between Lake Alexandrina and the Coorong lagoon.


River regulation Estuaries Diatoms Salinisation Sedimentation Eutrophication Ramsar 



This project was partly funded through the National Action Plan for Salinity and Water Quality under the Upper South East Dryland Salinity and Flood Management Program (USEDS & FMP). Liz Barnett kindly provided access to LA2 sediments. Penny Everingham of the DWLBC provided administrative support. The cooperation of the Ngarrindjeri community is greatly appreciated, particularly Derek Gollin. Asta Cox, Carl Sayer, Glenn Tassicker, Angus MacGregor, Ashley Natt and Craig McVeigh assisted with fieldwork.


  1. Appleby, P. G. & F. Oldfield, 1992. Application of lead-210 to sedimentation studies. In: Ivanovich, M. & R. S. Harmon (eds), Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Clarendon press, Oxford: 731–778.Google Scholar
  2. Archibald, R. E. M., 1983. The Diatoms of the Sundays and Great Fish Rivers in the Eastern Cape Province of South Africa. Cramer, Vaduz.Google Scholar
  3. Barnett, E., 1993. A Holocene paleoenvironmental history of Lake Alexandrina, South Australia. Journal of Paleolimnology 12: 259–268.CrossRefGoogle Scholar
  4. Battarbee, R. W., 1986. Diatom Analysis. In B.E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaleohydrology. John Wiley, Chichester.Google Scholar
  5. Bennion, H., J. Fluin & P. Appleby, 2000. Palaeolimnological Investigation of Scottish Freshwater Lochs. SNIFFER Report No. SR (00)02D. ENSIS Ltd. London.Google Scholar
  6. Bennion, H., J. Fluin & G. L. Simpson, 2004. Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. Journal of Applied Ecology 41: 124–138.CrossRefGoogle Scholar
  7. Bourman, R. P. & E. J. Barnett, 1995. Impacts of river regulation on the terminal lakes and mouth of the River Murray, South Australia. Australian Geographical Studies 33: 101–115.CrossRefGoogle Scholar
  8. Bourman, R. P. & C. V. Murray-Wallace, 1991. Holocene evolution of a sand spit at the mouth of a large river system: Sir Richard Peninsula and the Murray Mouth, South Australia. Zeitschrift fur Geomorphologie 81: 63–83.Google Scholar
  9. Bourman, R. P., C. V. Murray-Wallace, A. P. Belperio & N. Harvey, 2000. Rapid coastal change in the River Murray estuary of Australia. Marine Geology 170: 141–168.CrossRefGoogle Scholar
  10. Bowler, J. M., 1981. Australian salt lakes. A palaeohydrological approach. Hydrobiologia 82: 431–444.CrossRefGoogle Scholar
  11. Cann, J. H., R. P. Bourman & E. J. Barnett, 2000. Holocene foramanifera as indicators of relative estuarine-lagoonal and oceanic influences in estuarine sediments of the River Murray, South Australia. Quaternary Research 53: 378–391.CrossRefGoogle Scholar
  12. Commonwealth of Australia and the Governments of New South Wales, Victoria, South Australia, and the Australian Capital Territory (COAG), 2004. Intergovernmental agreement on addressing water overallocation and achieving environmental objectives in the Murray-Darling Basin.Google Scholar
  13. De Deckker, P., 1981. Australian salt lakes: history, chemistry and biota – a review. Hydrobiologia 105: 231–244.CrossRefGoogle Scholar
  14. Eastburn, D. 1990. The river. In Mackay N. & D. Eastburn (eds), The Murray. Murray Darling Basin Commission, Canbera: 3–16.Google Scholar
  15. England, R., 1993. The Cry of the Coorong: The History of Water flows into the Coorong: From Feast to Famine? Kingston, SA: 48 pp.Google Scholar
  16. Espinosa, J., 1994. Diatom palaeoecology of the Mar Chiquita Lagoon Delta, Argentina. Journal of Paleolimnology 1: 17–23.CrossRefGoogle Scholar
  17. Fluin, J., 2002. A diatom – based palaeolimnological investigation of the lower Murray River, south eastern Australia. Ph.D. thesis, School of Geographical and Environmental Studies, Monash University, Victoria.Google Scholar
  18. Foged, N., 1978. Diatoms in Eastern Australia. Cramer, Vaduz.Google Scholar
  19. Gasse, F., 1986. East African Diatoms: Taxonomy, Ecological Distribution. Cramer, Berlin.Google Scholar
  20. Gasse, F. S., L. Juggins & B. Khelifa, 1995. Diatom-based transfer functions for inferring hydrochemical characteristics of African palaeolakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117: 31–54.CrossRefGoogle Scholar
  21. Geddes, M., 1984. Limnology of Lake Alexandrina, River Murray, South Australia, and the effects of nutrients and light on the phytoplankton. Australian Journal of Marine and Freshwater Research 35: 399–415.CrossRefGoogle Scholar
  22. Gell, P. A., 1997. The development of a diatom data base for inferring lake salinity: towards a quantitative approach for reconstructing past climates. Australian Journal of Botany 45: 389–423.CrossRefGoogle Scholar
  23. Gell, P., J. Tibby, J. Fluin, P. Leahy, M. Reid, K. Adamson, S. Bulpin, A. MacGregor, P. Wallbrink, G. Hancock & G. B. Walsh, 2005. Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Research and Applications 21: 257–269.CrossRefGoogle Scholar
  24. Germain, H., 1981. Flores des diatomées des eaux douces et saumâtres. Société Nouvelle des Editions Boubeé, Paris.Google Scholar
  25. John, J., 1983. The Diatom Flora of the Swan River Estuary Western Australia, Bibliotheca Phycologia 64, J. Cramer, Vaduz.Google Scholar
  26. Jones, G., T. Hillman, R. Kingsford, T. MacMahon, K. Walker, A. Arthington, J. Whittington & S. Cartwright, 2002. Independent Report of the Expert Reference Panel on Environmental Flows and Water Quality Requirements for the River Murray System. Cooperative Research Centre for Freshwater Ecology, Canberra, Australia.Google Scholar
  27. Krammer, K. & H. Lange-Bertalot, 1986. Susswasserflora von Mitteleuropa. Bacillariophyceae, Teil i: Naviculaceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
  28. Krammer, K. & H. Lange-Bertalot, 1988. Susswasserflora von Mitteleuropa. Bacillariophyceae Teil ii: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
  29. Krammer, K. & H. Lange-Bertalot, 1991a. Susswasserflora von Mitteleuropa. Bacillariophyceae Teil iii: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
  30. Krammer, K. & H. Lange-Bertalot, 1991b. Susswasserflora von Mitteleuropa. Bacillariophyceae Teil iv: Achnanthaceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
  31. Leahy, P. J., J. Tibby, A. P. Kershaw, H. Heijnis & J. S. Kershaw, 2005. The impact of European settlement on Bolin Billabong, a Yarra River floodplain lake, Melbourne, Australia. River Research and Applications 21: 131–149.CrossRefGoogle Scholar
  32. Leslie, C. & G. J. Hancock (in press). Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediment cores. Journal of Environmental Radioactivity (accepted).Google Scholar
  33. Mackay, A. W., D. B. Ryves, R. W. Battarbee, R. J. Flower, D. Jewson, P. Rioual & M. Sturm, 2005. 1000 years of climate variability in central Asia: assessing the evidence using Lake Baikal diatom assemblages and the application of a diatom-inferred model of snow thickness. Global & Planetary Change 46: 281–297.CrossRefGoogle Scholar
  34. McCormac, F. G., A. G. Hogg, P. G. Blackwell, C. E. Buck, T. F. G. Higham & P. J. Reimer, 2004. SHCal04 Southern Hemisphere Calibration 0–11.0 cal kyr BP. Radiocarbon 46: 1087–1092.Google Scholar
  35. Menzies, B., 1983. Irrigation and Settlement in the South Australian Riverland. South Australian Department of Agriculture, Adelaide.Google Scholar
  36. Norris, R. H., P. Liston, N. Davies, J. Coysh, F. Dyer, S. Linke, I. Prosser & B. Young, 2002. Snapshot of the Murray-Darling Basin River Condition. Cooperative Research Centre for Freshwater Ecology, Canberra, Australia.Google Scholar
  37. Ogden, R. W., 2000. Modern and historical variation in aquatic macrophyte cover of billabongs associated with catchment development. Regulated Rivers: Research & Management 16: 487–512.CrossRefGoogle Scholar
  38. Reid, M., J. Fluin, R. Ogden, J. Tibby & P. Kershaw, 2002. Long-term perspectives on human impacts on floodplain-river ecosystems, Murray-Darling Basin, Australia. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie. 28: 710–716.Google Scholar
  39. Robbins, J. A., 1978. Geochemical and geophysical applications of radioactive lead. In Nriagu, J. O. (ed.), The Biogeochemistry of Lead in the Environment, Part A. Elsevier Scientific, Amsterdam: 285–393.Google Scholar
  40. Roberts, N., 1998. The Holocene: An Environmental History, 2nd edn. Blackwell Publishers, Oxford.Google Scholar
  41. Shotton, F. W., 1972. An example of hard water error in radiocarbon dating of vegetable matter. Nature, 240: 460–461.CrossRefGoogle Scholar
  42. Sim, T. & K. Muller, 2004. A Fresh History of the Lakes: Wellington to Murray Mouth, 1800s to 1935. River Murray Catchment Water Management Board, Strathalbyn.Google Scholar
  43. Stanley, S. & P. De Deckker, 2002. A Holocene record of allochthonous mineral grains into an Australian alpine lake; implications for the history of climate change in southeast Australia. Journal of Paleolimnology 27: 207–219.CrossRefGoogle Scholar
  44. Stuiver, M. & P.J. Reimer, 2005. Radiocarbon calibration program CALIB rev5.0.2,, accessed on 22.1.2007.Google Scholar
  45. ter Braak, C. J. F. & P. Smilauer, 1999. Canoco for Windows Version 4.02. Wageningen, The Netherlands, Centre for Biometry, Wageningen.Google Scholar
  46. Tucker, P. J., 1997. Sediment interactions between Lake Alexandrina and the Coorong: the impacts of the Murray Mouth Barrages. Unpublished Honours thesis. Department of Geography, University of Adelaide.Google Scholar
  47. Weckström, K. & S. Juggins, 2006. Coastal diatom–environment relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology 42: 21–35.CrossRefGoogle Scholar
  48. Witkowski, A., H. Lange-Bertalot & D. Metzeltin, 2001. Diatom Flora of Marine Coasts 1. Iconographia Diatomologica, Vol. 7. A.R.G. Gantner Verlag, Ruggell.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jennie Fluin
    • 1
  • Peter Gell
    • 1
  • Deborah Haynes
    • 2
  • John Tibby
    • 1
  • Gary Hancock
    • 3
  1. 1.Geographical & Environmental StudiesThe University of AdelaideAdelaideAustralia
  2. 2.School of Earth & Environmental ScienceThe University of AdelaideAdelaideAustralia
  3. 3.CSIRO Land WaterCanberraAustralia

Personalised recommendations