, Volume 592, Issue 1, pp 1–10 | Cite as

Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds, Israel

  • Francis Dov PorEmail author
Opinion Paper


The discovery, in the inner coastal plain of Israel, of a deep, secluded subterranean ecosystem, supported by chemosynthetis producing by sulfide-oxidizing bacteria, suggests the existence of a new biome, “Ophel”, with an autonomous energy basis. This biome could provide an ecological and historical basis for explaining the high taxonomic diversity of subterranean faunas, especially of crustaceans. A continuum with the anchialine ecosystems, in which chemoautotrophy is also encountered, as well as with marine hot vents and cold seeps, implies the existence of a second, parallel chemosynthesis-based eukaryotic biosphere.


Groundwater biota Chemoautotrophy Biospheric considerations 



I wish to thank Prof. D.L. Danielopol for his considerate encouragement, Dr. W.F. Humphreys for the many precious bibliographic indications, Prof. B. Sket for his suggestions and Dr. L. Botoşăneanu for his friendly criticism. My thanks are due also to my colleagues from the Hebrew University, to Prof. A. Frumkin and the Masters student I. Naaman, the discoverers of the Ayyalon Cave, to the arachnologist Dr. G. Levy as well as to the microbiologist Prof. A. Oren, and finally I thank my collaborators for many years Drs. Ch. Dimentman, M. Tsurnamal and H.J. Bromley.


  1. Barker, D., 1959. The distribution and systematic position of the Thermosbaenacea. Hydrobiologia 13: 209–235.CrossRefGoogle Scholar
  2. Bishop, R. E., B. Kakuk & J. J. Torres, 2004. Life in the hypoxic and anoxic zones: metabolism and proximate composition of Caribbean troglobitic crustaceans with observations on the water chemistry of two anchialine caves. Journal of Crustacean Biology 24: 379–392.CrossRefGoogle Scholar
  3. Botoşăneanu, L. & T. M. Iliffe, 2006. A new species of stygobitic cirolanid (Isopoda:Cirolanidae) from an anchialine cave on Abaco, the Bahamas. Bulletin de L’Insitut Royal des Sciences Naturelles de Belgique 76: 27–31.Google Scholar
  4. Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17.Google Scholar
  5. Danielopol, D. L., A. Baltanás & G. Bonaduce, 1995. The darkness syndrome in subsurface-shallow and deep-sea dwelling Ostracoda (Crustacea). In Uiblein, F., J. Ott & M. Stachowitsch (eds), Deep-sea and extreme shallow water habitats: affinities and adaptations. Biosystematics and Ecology Series 13: 123–143.Google Scholar
  6. Danielopol, D. L., P. Pospisil & Rouch, 2000. Biodiversity in groundwater: a large-scale view. Trends in Ecology and Evolution 15: 223–224.Google Scholar
  7. Engel, A. S. (in press) On the biodiversity of sulfidic karst habitats. Journal of Cave and Karst Studies.Google Scholar
  8. Fenchel, T. & R. Riedl, 1970. The sulfide system: a new biotic community underneath the oxidised layer of marines and bottoms. Marine Biology 7: 255--268. CrossRefGoogle Scholar
  9. Frumkin, A. & H. Gvirtzman, 2006. Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel. Journal of Hydrology 318: 316–333.CrossRefGoogle Scholar
  10. Gavrieli, I., A. Burg & J. Guttman, 2002. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judean Group, Israel. Hydrogeology Journal 10: 483–494.CrossRefGoogle Scholar
  11. Gold, Th., 1992. The deep, hot biosphere. Proceedings of the National Academy of Sciences 89: 6045–6049.CrossRefGoogle Scholar
  12. Humphreys, W. F., 1999. Physico-chemical profile and energy fixation in Bundera Sinkhole and anchialine remiped habitat in northwestern Australia. Journal of the Royal Society of Western Australia 82: 89–98.Google Scholar
  13. Humphreys, W. F., 2000a. Background and Glossary. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier, 3–14.Google Scholar
  14. Humphreys, W. F., 2000b. Relict faunas and their derivation. In Wilkens, H., D. C. Culvert & W. F. Humphreys (eds), Subterranean environments, Elsevier, 417–432.Google Scholar
  15. Humphreys, W. F., 2006. Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54: 115–132.CrossRefGoogle Scholar
  16. Hüppop, K. 2000. How do cave animals cope with the food scarcity in caves? In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier.Google Scholar
  17. Hutchinson, E. G., 1965. The ecological theater and the evolutionary play. Yale University Press.Google Scholar
  18. Iliffe, T. M., 2000. Anchialine cave ecology. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier 59–76.Google Scholar
  19. Iliffe, T. M. & L. Botoşăneanu, 2006. The remarkable diversity of subterranean Cirolanidae (Crustacea:Isopoda) in the peri-Caribbean and Mexican Realm.Bulletin de L’Institut Royal des Sciences Naturelles de Belgique. Biologie 76: 5–20.Google Scholar
  20. Jørgensen, B. B. & S. D’Hondt, 2006. A starving majority deep beneath the seafloor. Science 314: 932–934.PubMedCrossRefGoogle Scholar
  21. Krajcik, K., 2007. Robot seeks new life - and new funding- in the Abyss of Zacatón. Science 315(5810): 322–324.CrossRefGoogle Scholar
  22. Levy, G., 2007. First troglobite scorpion from Israel and a new Chaetoid family (Arachnida, Scorpiones). Zoology in the Middle East 40: 91–96.Google Scholar
  23. Lin, L. H., P. L. Wang, D. Rumble, J. Lippmann-Pipke, E. Boice, L. M. Pratt, B. Sherwood Lollar, E. L. Brodie, T. C. Hazen, G. L. Anderson, T. Z. DeSantis, D. P. Moser, D. Kershaw & T. C. Onstott, 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314: 479–482.PubMedCrossRefGoogle Scholar
  24. Longley, G., 1981. The Edwards aquifer: earth’s most diverse groundwater ecosystem? International Journal of Speleology 11: 123–128.Google Scholar
  25. Moore, W. S., 1999. The subterranean estuary, a reaction zone of ground water and seawater. Marine Chemistry 65: 111–125.CrossRefGoogle Scholar
  26. Ott, J. A., R. Novak, F. Schiemer, U. Hentschel, M. Nebelsick & M. Polz, 1991. Tackling the sulfide gradient: a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. P.S.Z.N.I. Marine Ecology 12: 261–279.CrossRefGoogle Scholar
  27. Parkes, R. J., G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, K. J. Kallmeyer, B. B. Jørgensen, I. W. Aiello & J. C. Fry, 2005. Deep sub-seafloor prokaryotes stimulated at interphases over geological time. Nature 436: 390–394.PubMedCrossRefGoogle Scholar
  28. Pennisi, E., 1993. Saving Hades’ creatures (Edwards Aquifer, Texas). Science News ( Scholar
  29. Pohlman, J. W., T. M. Iliffe & L. A. Cifuentes, 1997. Stable isotope study of organic cycling and the ecology of an Anchialine cave system. Marine Ecology Progress Series. 155: 17–27.Google Scholar
  30. Por, F. D., 1963. The relict aquatic fauna of the Jordan Rift Valley: new contributions and review. Israel Journal of Zoology 12: 47–58.Google Scholar
  31. Por, F. D., 1986. Crustacean biogeography of the Late Miocene Middle Eastern Landbridge. In Gore, R. H. & K. L. Heck (eds), Crustacean biogeography. A.A. Balkema: 69–84.Google Scholar
  32. Porter, M. L., S. Russell, A. S. Engel & L. A. Stern, 2002. Population studies of the endemic snail Physa spelunca (Gastropoda:Physidae) from Lower Kane Cave, WY. Journal of Cave and Karst Studies 64: 181.Google Scholar
  33. Poulson, L. & K. H. Lavoie, 2000.The trophic basis of subterranean ecosystems. In Wilkens, H., D. C. Culver & W. F. Humphreys, (eds), Subterranean ecosystems, Elsevier: 231–249.Google Scholar
  34. Rouch, R. & D. L. Danielopol, 1987. L’origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. Stygologia 3(4): 345–372.Google Scholar
  35. Sarbu, S. M., 2000. Movile cave: A chemoautotrophically based groundwater ecosystem. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier: 319–344.Google Scholar
  36. Sarbu, S. M., T. C. Kane & B. K. Kinkle, 1996. A chemoautotrophically based cave ecosystem. Science 272: 1953–1955.PubMedCrossRefGoogle Scholar
  37. Sarbu, S. M., S. Galdenzi, M. Menichetti & G. Gentile, 2000. Geology and biology of the Frasassi Caves in Central Italy: an ecological multidisciplinary study of a hypogenic karst system. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier: 359–378.Google Scholar
  38. Sawicki, Th., 2003. Anchialine caves and their ecology. Global Underwater Explorers (
  39. Schiemer, F. & J. Ott, 2001. Metabolic levels and microhabitat of an interstitial cephalocarid and micro-isopod. Marine Ecology 22: 13–22.CrossRefGoogle Scholar
  40. Schram, F. R., 1982. Paleozoic Peracarida of North America. Fieldiana Geologica 33: 95–124.Google Scholar
  41. Shen, Y., R. S. Taylor & F. R. Schram, 1998. New spelaeogriphacean (Crustacea:Peracarida) from the Upper Jurassic of China. Contributions to Zoology 68(1): 19–36.Google Scholar
  42. Simon, K. S., E. F. Benfield & S. A. Macko, 2003. Food web structure and the role of the epilithic biofilms in cave streams. Ecology 84: 2395–2406.CrossRefGoogle Scholar
  43. Stevens, T. O. & P. McKinley James, 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450–454.CrossRefGoogle Scholar
  44. Tsurnamal, M., 1978. The biology and ecology of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana 34(2): 195–213. CrossRefGoogle Scholar
  45. Tsurnamal, M. (in press). A new species of the stygobiotic blind prawn Typhlocaris Calman (Decapoda, Palaemonidae, Typhlocaridinae) from Israel. CrustaceanaGoogle Scholar
  46. Tsurnamal, M. & F. D. Por, 1968. The subterranean fauna associated with the blind palaemonid prawn, Typhlocaris galilea Calman. International Journal of Speleology 3: 219–223.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations