Advertisement

Hydrobiologia

, Volume 592, Issue 1, pp 475–486 | Cite as

Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis

  • Hong Shen
  • Lirong SongEmail author
Primary Research Paper

Abstract

Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular (4 strains) and colonial (4 strains) Microcystis strains to phosphorus (P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l−1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P-starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P-limited conditions, the oxygen evolution rate, F v/F m, and ETR max were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.

Keywords

Unicellular and colonial Microcystis Alkaline phosphatase activity Pi uptake Oxygen evolution activity Fv/Fm Maximum electron transport rate (ETRmax

Notes

Acknowledgements

This work was supported by grants from the Chinese Academy of Sciences Project (No.KZCX2-YW-426) and the National Key Project for Basic Research of China (No.2002CB412306).

References

  1. Carmichael, W. W., 1992. Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology 72: 445–459.PubMedGoogle Scholar
  2. Dignum, M., H. L. Hoogveld, H. C. P. Matthijs, H. J. Laanbroek & R. Pel, 2004. Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMS Microbiology Ecology 48: 29–38.CrossRefPubMedGoogle Scholar
  3. Dokulil, M., W. Chen & Q. Cai, 2000. Anthropogenic impacts to large lakes in China: the Tai Hu example. Aquatic Ecosystem Health and Management 3: 81–94.CrossRefGoogle Scholar
  4. Eppley, R. W., J. N. Rogers & J. J. McCarthy, 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography 14: 912–920.Google Scholar
  5. Finkel, Z. V. & A. J. Irwin, 2000. Modeling size-dependent photosynthesis: Light absorption and the allometric rule. Journal of Theoretical Biology 204: 361–369.PubMedCrossRefGoogle Scholar
  6. Fitzgerald, G. P. & T. C. Nelson, 1966. Extractive and enzymatic analyses for limiting or surplus phosphorus in algae. Journal of Phycology 2: 32–37.CrossRefGoogle Scholar
  7. Hallegraeff, G., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.Google Scholar
  8. Hernández, I., J. R. Andría, M. Christmas & B. A. Whitton, 1999. Testing the allometric scaling of alkaline phosphatase activity to surface/volume ratio in benthic marine macrophytes. Journal of Experimental Marine Biology and Ecology 241: 1–14.CrossRefGoogle Scholar
  9. Hernández, I., J. A. Fernández & F. X. Niell, 1993. Influence of phosphorus status on the seasonal variation of alkaline phosphatase activity in Porphyra umbilicalis (L.). Journal of Experimental Marine Biology and Ecology 173: 181–196.CrossRefGoogle Scholar
  10. Hernández, I., F. X. Niell & B. A. Whitton, 2002. Phosphatase activity of benthic marine algae. An overview. Journal of Applied Physiology 14: 475–487.Google Scholar
  11. Hoppe, H. G., 2003. Phosphatase activity in the sea. Hydrobiologia 493: 187–200.CrossRefGoogle Scholar
  12. Isvánovics, V., H. M. Shafik, M. Présing & S. Juhos, 2000. Growth and phosphate uptake kinetics of the cyanobacerium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology 43: 257–275.CrossRefGoogle Scholar
  13. Jansson, M., H. Olsson & K. Petterson, 1988. Phosphatases; origin, characteristics and function in lake. Hydrobiologia 170: 157–175.Google Scholar
  14. Jiang, L., L. Yang, L. Xiao, X. Shi, G. Gao & B. Qin, 2007. Quantitative studies on phosphorus transference occurring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia 581: 161–165.CrossRefGoogle Scholar
  15. Jones, R. J., T. Kildea & O. Hoegh-Guldberg, 1999. PAM Chlorophyll fluorometry: a New in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Marine Pollution Bulletin 38: 864–874.CrossRefGoogle Scholar
  16. Kilham, S., D. A. Kreeger, C. Goulden & S. Lynn, 1997. Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biology 38: 591–596.CrossRefGoogle Scholar
  17. Kolmakov, V. I., 2006. Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in Aquatic Systems. Microbiology 75: 115–118.Google Scholar
  18. Krivtsov, V., E. G. Bellinger & D. C. Sigee, 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquatic Ecology 39: 123–134.CrossRefGoogle Scholar
  19. Kromkamp, J. & J. Peene, 1999. Estimation of phytoplankton photosynthesis and nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. Aquatic Ecology 33: 101–104.CrossRefGoogle Scholar
  20. Kromkamp, J., A. Vandenheuvel & L. R. Mur, 1989. Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa. British Phycological Journal 24: 347–355.CrossRefGoogle Scholar
  21. Kruskopf, M. M. & S. D. Plessis, 2004. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia 513: 59–70.CrossRefGoogle Scholar
  22. Kruskopf, M., & S. D. Plessis, 2006. Growth and filament length of bloom forming Oscillatoria simplicissima (Oscillatoriales, Cyanophyta) in varying N and P concentrations. Hydrobiologia 556: 357–362.CrossRefGoogle Scholar
  23. Kuwata, A. & T. Miyazaki, 2000. Effects of ammonium supply rates on competition between Microcystis novacekii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecological Modelling 135: 81–71.CrossRefGoogle Scholar
  24. Lee, T. M., 2000. Phosphate starvation induction of acid phosphatase in Ulva lactuca L. (Ulvales, Chlorophyta). Botanical Bulletin of Academia Sinica 41: 19–25.Google Scholar
  25. Lee, T. M., P. F. Tsai, Y. T. Shya & F. Sheu, 2005. The effects of phosphite on phosphate starvation responses of Ulva lactuca (Ulvales, Chlorophyta). Journal of phycology 41: 975–982.CrossRefGoogle Scholar
  26. Lei, L. M., L. R. Song & Y. D. Liu, 2001. Comparison of growth and toxin analysis in two phenotype Microcystis aeruginosa. Acta Hydrobiologica Sinica 25: 205–209.Google Scholar
  27. Litchman, E., D. Steiner & P. Bossard, 2003. Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology 48: 2141–2148.CrossRefGoogle Scholar
  28. Mateo, P., I. Douterelo, E. Berrendero & E. Perona, 2006. Physiological differences between two species cyanobacteria in relation to phosphorus limitation. Journal of phycology 42: 61–66.CrossRefGoogle Scholar
  29. McCormick, P. V., M. B. O”Dell, R. B. E. ІІІ Shuford, J. G. Backus & W. C. Kennedy, 2001. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71: 119–139.Google Scholar
  30. McQueen, D. J. & D. R. S. Lean, 1987. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St.George, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 44: 598–604.CrossRefGoogle Scholar
  31. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  32. Nalewajko, C. & T. P. Murphy, 2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2: 45–48.CrossRefGoogle Scholar
  33. Okada, M., R. Sudo & S. Aiba, 1982. Phosphorus uptake and growth of blue-green alga, Microcystis aeruginosa. Biotechnology and Bioengineering 24: 142–153.CrossRefGoogle Scholar
  34. Ou, M. M., Y. Wang & W. M. Cai, 2005. Physiological and biochemical changes in Microcystis aeruginosa Qutz. in phosphorus limitation. Journal of Integrative Plant Biology 47: 692–702.CrossRefGoogle Scholar
  35. Pirt, S. J., 1975. Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, 4–6.Google Scholar
  36. Ray, J. M., D. Bhaya, B M. A. Lock & A. R. Grossman, 1991. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. Strain PCC7942. Journal of Bacteriology 173: 4297–4309.PubMedGoogle Scholar
  37. Reynolds, C. S., 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578: 37–45.CrossRefGoogle Scholar
  38. Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman & R.Y. Stanier, 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.Google Scholar
  39. Ritchie, R. J., A. T. Donelle & A. W. D. Larkum, 2001. Phosphate limited cultures of the cyanobacterium Synechococcus are capable of very rapid, opportunistic uptake of phosphate. New Phytologist 152: 189–201.CrossRefGoogle Scholar
  40. Rohrlack, T., M. Henning & J. G. Kohl, 1999. Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata’s ingestion rate. Journal of Plankton Research 21: 1489–1500.CrossRefGoogle Scholar
  41. Schreiber, U. & W. Bilger, 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research 10: 51–62.CrossRefGoogle Scholar
  42. Smith, R. E. H., & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. Journal of Phycology 18: 275–284.CrossRefGoogle Scholar
  43. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.CrossRefPubMedGoogle Scholar
  44. Song, L. R., T. Sano, R. H. Li, M. M. Watanabe, Y. D. Liu & K. Kaya, 1998. Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycological Research 46(Suppl): 19–23.Google Scholar
  45. Spijkerman, E. & P. F. M. Coesel, 1998. Alkaline phosphatase activity in two planktonic desmid spieces and possible role of an extracellular envelope. Freshwater Biology 39: 503–513.CrossRefGoogle Scholar
  46. Stolte, W. & R. Riegman, 1995. Effect of phytoplankton cell size on transient-state nitrate and ammonium uptake kinetics. Microbiology 141: 1221–1229.CrossRefGoogle Scholar
  47. Takeya, K., A. Kuwata, M. Yoshida & T. Miyazaki, 2004. Effect of dilution rate on competitive interactions between the cyanobacterium Microcystis novacekii and the green alga Scenedesmus quadricauda in mixed chemostat cultures. Journal of Plankton Research 26: 29–35.CrossRefGoogle Scholar
  48. Vézie, C., J. Rapala, J. Vaitomaa, J. Seitsonen & K. Sivonen, 2002. Effects of nitrogen and phosphorus on the growth of toxic and nontoxic Microcystis strains and on intracellular Microcystin concentrations. Microbial Ecology 43: 443–454.PubMedCrossRefGoogle Scholar
  49. Weich, R.G. & E. Granéli, 1989. Extracellular alkaline phosphatase activity in Ulva lactuca L. Journal of Experimental Marine Biology and Ecology 129: 33–44.CrossRefGoogle Scholar
  50. Whitton, B. A., S. L. J. Grainger, G. R. W. Hawley & J. W. Simon, 1991. Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microbial Ecology 21: 85–98.CrossRefGoogle Scholar
  51. Wu, Z. X., N. Q. Gan, Q. Huang & L. R. Song, 2007. Response of Microcystis to copper stress —Do phenotypes of Microcystis make a difference in stress tolerance? Environmental Pollution 147: 324–330.PubMedCrossRefGoogle Scholar
  52. Xu, T., & L. R. Song, 2007. Studies on the utility of inorganic carbon in three strains of Microcystis aeruginosa. Acta Hydrobiologica Sinica 31: 125–130.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanP. R. China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations