Hydrobiologia

, Volume 592, Issue 1, pp 455–464

Can diatom-based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area

  • Jonathan Charles Taylor
  • Jean Prygiel
  • Andre Vosloo
  • Pieter A. de la Rey
  • Leon van Rensburg
Primary Research Paper

Abstract

The inclusion of diatoms into the current suite of biomonitoring tools in use in South Africa, as well as the use of European and other diatom indices in South Africa, and in particular the Crocodile and West Marico water management area, is discussed. The indices, when compared to chemical analyses, proved useful in providing an indication of the quality of the investigated waters. Several widely distributed diatom species were shown to have similar ecological tolerances in South Africa when compared to Europe. Although most of the diatoms encountered in the study were cosmopolitan, several possibly endemic species were recorded. The occurrence of endemic species, not included in existing diatom indices may lead to miscalculations of diatom indices. It is concluded that although diatom indices developed in Europe and elsewhere are useful at the present to indicate water quality, a diatom index unique to South Africa including endemic species will have to be formulated.

Keywords

Diatoms Indices Water quality Biomonitoring 

References

  1. Cemagref, 1982. Etude des methods biologiques d’appréciation quantitative de la qualité des eaux. Rapport Q. E. Lyon, Agence de l’eau Rhône-Méditerranée-Corse-Cemagref, Lyon, France.Google Scholar
  2. Cholnoky, B. J., 1957. Über die diatomeen flora einiger gewaesser in den Magalies-Bergen nahe Rustenburg (Transvaal). Botanica Notiser 110: 332–362.Google Scholar
  3. Cholnoky, B. J., 1968. Die Ökologie der Diatomeen in Binnengewässern. J Cramer, Lehre.Google Scholar
  4. Coste, M. & H. Ayphassorho, 1991. Étude de la qualité des eaux du Bassin Artois-Picardie à l’aide des communautés de diatomées benthiques (application des indices diatomiques). Rapport Cemagref. Bordeaux - Agence de l’Eau Artois-Picardie, Douai.Google Scholar
  5. De la Rey, P. A., J. C. Taylor, A. Laas, L. van Rensburg & A. Vosloo, 2004. Determining the possible application value of diatoms as indicators of general water quality: A comparison with SASS 5. Water SA 30: 325–332.Google Scholar
  6. Dell’Uomo, A., 1996. Assessment of water quality of an Apennine river as a pilot study. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik, Universität Innsbruck, 65–73.Google Scholar
  7. Descy, J.-P. & M. Coste, 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24: 2112–2116.Google Scholar
  8. Dokulil, M. T., R. Schmidt & S. Kofler, 1997. Benthic diatom assemblages as indicators of water quality in an urban flood-water inpoundment, Neue Donau, Vienna, Austria. Nova Hedwigia 65: 273–283.Google Scholar
  9. DWAF, 2004. National Water Resources Strategy, 1st edn. Department: Water Affairs and Forestry, Pretoria.Google Scholar
  10. Ector, L. & F. Rimet, 2005. Using bioindicators to assess rivers in Europe: An overview. In Lek, S., M. Scardi, P. F. M. Verdonschot & Y. S. Park (eds), Modelling Community Structure in Freshwater Ecosystems. Springer Verlag, Berlin, 1–19.Google Scholar
  11. Ector, L., A. Loncin & L. Hoffmann, 1999. Compte rendu du 17e colloque de l’Association des diatomistes de langue française. Cryptogamie - Algologie 20: 105–148.CrossRefGoogle Scholar
  12. Eloranta, P. & J. Soininen, 2002. Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology 14: 1–7.CrossRefGoogle Scholar
  13. EC, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327/1.Google Scholar
  14. EEC, 1991. Council directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC), Official Journal of the European Communities, L 135/40, 1991: 40–52.Google Scholar
  15. Fawzi, B., M. Loudiki, S. Oubraim, B. Sabour & M. Chlaida, 2002. Impact of wastewater effluent on the diatom assemblages structure of a brackish small stream: Oued Hassar (Morocco). Limnologica 32: 54–65.Google Scholar
  16. Hartley, R., 1996. An atlas of British diatoms. Biopress Ltd., Bristol.Google Scholar
  17. Hohls, B. R., 1996. National biomonitoring programme for riverine ecosystems: Framework document for the programme. NBP report series No. 1. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria.Google Scholar
  18. Kellogg, B. & D. E. Kellogg, 2002. Diatom Monographs. Vol. 1. Non-Marine and Littoral Diatoms from Antarctic and Subantarctic regions: Distribution and Updated Taxonomy. ARG Gantner Varlag Kommanditgesellschaft, Ruggell.Google Scholar
  19. Kelly, M. G., 1998. Use of community-based indices to monitor eutrophication in European rivers. Environmental Conservation 25: 22–29.CrossRefGoogle Scholar
  20. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  21. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E. A. Lindstrøm, M. Leitao, P. Marvan, J. Padisák, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. Van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.CrossRefGoogle Scholar
  22. Krammer, K., 2002. Diatoms of Europe. Diatoms of European Waters and Comparable Habitats, Vol. 3. ARG Gantner Varlag Kommanditgesellschaft, Ruggell.Google Scholar
  23. Krammer, K. & H. Lange-Bertalot, 1986–1991. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 1–4. Gustav Fischer Verlag, Stuttgart. Germany.Google Scholar
  24. Kwandrans, J., P. Eloranta, B. Kawecka & K. Wojtan, 1998. Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology 10: 193–201.CrossRefGoogle Scholar
  25. Lange-Bertalot, H., 2001. Diatoms of Europe. Diatoms of European Waters and Comparable Habitats, Vol. 2. ARG Gantner Varlag Kommanditgesellschaft, Ruggell.Google Scholar
  26. Leclerq, L. & B. Maquet, 1987. Deux nouveaux indices chimique et diatomique de qualité d’eau courante. Application au Samson et à ses affluents (bassin de la Meuse belge). Comparaison avec d’autres indices chimiques, biocénotiques et diatomiques. Institut Royal des Sciences Naturelles de Belgique, document de travail 28.Google Scholar
  27. Lecointe, C., M. Coste & J. Prygiel, 1993. “Omnidia”: Software for taxonomy, calculation of diatom indices and inventories management. Hydrobiology 269/270: 509–513.CrossRefGoogle Scholar
  28. Lenoir, A. & M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the French National Water Board network. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik. Universität Innsbruck, 29–43.Google Scholar
  29. McCormick, P. V. & J. J. Cairns, 1994. Algae as indicators of environmental change. Journal of Applied Phycology 6: 509–526.CrossRefGoogle Scholar
  30. Montesanto, B., S. Ziller & M. Coste, 1999. Diatomées épilithiques et qualité biologique des ruisseaux de mont Stratonikon, Chalkidiki (Grèce). Cryptogamie - Algologie 20: 235–251.CrossRefGoogle Scholar
  31. Padisák, J., 1998, The Phytoplankton. In O’Sullivan, P. & C. S. Reynolds (eds), The Lakes Handbook. Blackwell Science Ltd, Oxford.Google Scholar
  32. Patrick, R., M. H. Hohn & J. H. Wallace, 1954. A new method for determining the pattern of the diatom flora. Notulae Naturae 259: 2–12.Google Scholar
  33. Prygiel, J. & M. Coste, 1993. Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie: bilan et perspectives. Annales of Limnology 29: 225–267.Google Scholar
  34. Prygiel, J. & M. Coste, 2000. Guide méthodologique pour la mise en œuvre de l’indice Biologique Diatomées NF T 90-354. Agences de l’Eau-Cemagref de Bordeaux, mai 2000, 134 pages + Clés de déetrmination (89 planches) + cédérom français-anglais (tax’IBD).Google Scholar
  35. Prygiel, J., M. Coste & J. Bukowska, 1999. Review of the major diatom-based techniques for the quality assessment of rivers - State of the art in Europe. In Prygiel, J., B. A. Whitton & J. Bukowska (eds), Use Of Algae for Monitoring Rivers III. Agence de l’Eau Artois- Picardie, France.Google Scholar
  36. Prygiel, J., L. Lévêque & R. Iserentant, 1996. Un nouvel indice diatomique pratique pour l’évaluation de la qualité des eaux en réseau de surveillance. Revue des Sciences de l’Eau 1: 97–113.Google Scholar
  37. Reid, M. A., J. C. Tibby D. Penny & P. A. Gell, 1995. The use of diatoms to assess past and present water quality. Australian Journal of Ecology 20: 57–64.CrossRefGoogle Scholar
  38. River Health Programme, 2005. State-of-Rivers Report: Monitoring and Managing the ecological State of Rivers in the Crocodile (West) Marico Water Management Area. Department of Environmental Affairs and Tourism. Pretoria.Google Scholar
  39. Rott, E., 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institut fur Botanik, Univ. Innsbruck, 9–16.Google Scholar
  40. Rott, E., H. C. Duthie & E. Pipp, 1998. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Canadian Journal of Fisheries and Aquatic Sciences 55: 1443–1453.CrossRefGoogle Scholar
  41. Rott, E., E. Pipp & P. Pfister, 2003. Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algological Studies 110: 91–115.CrossRefGoogle Scholar
  42. Round, F. E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.CrossRefGoogle Scholar
  43. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
  44. Schoeman, F. R. & R. E. M. Archibald, 1976–1980. The Diatom Flora of Southern Africa. National Institute for Water Research, Pretoria.Google Scholar
  45. Schiefele, S. & C. Schreiner, 1991. Use of diatoms for monitoring nutrient enrichment acidification and impact salts in Germany and Austria. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institüt für Botanik, Univ. Innsbruk.Google Scholar
  46. Sgro, G. V. & J. R. Johansen, 1998. Algal Periphyton Bioassessment Methods For Lake Erie Estuaries, Vol. 1, Metric Development. Lake Erie Office, Toledo, Ohio.Google Scholar
  47. Slàdeček, V., 1986. Diatoms as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica 14: 555–566.CrossRefGoogle Scholar
  48. Stevenson, R. J. & Y. Pan, 2003. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 11–40.Google Scholar
  49. Taylor, J. C., 2004. The application of diatom-based pollution indices in the Vaal catchment. Unpublished M.Sc. thesis, North-West University, Potchefstroom Campus, Potchefstroom.Google Scholar
  50. Taylor, J. C. & H. Lange-Bertalot, 2006. Eolimna archibaldii spec. nov. and Navigiolum adamantiforme comb. nov. (Bacillariophyceae): Two possibly endemic elements of the South African diatom flora tolerant to surface water pollution. African Journal of Aquatic Sciences 31: 175–183.Google Scholar
  51. Taylor, J. C., P. A. de la Rey & L. van Rensburg, 2005. Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. African Journal of Aquatic Sciences 30: 65–75.Google Scholar
  52. Taylor, J. C., M. S. Janse van Vuuren & A. J. H. Pieterse, 2007. The application and testing of diatom-based indices in the Vaal and Wilge rivers, South Africa. Water SA 33: 51–60.Google Scholar
  53. Ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Cannonical Community Ordination (version 4). Microcomputer Power, New York.Google Scholar
  54. Watanabe, T., K. Asai & A. Houki, 1986. Numerical estimation of organic pollution of flowing waters by using the epilithic diatom assemblage - Diatom Assemblage Index (DIApo). Science of the Total Environment 55: 209–218.CrossRefGoogle Scholar
  55. Whitton, B. A. & M. G. Kelly, 1995. Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20: 45–56.CrossRefGoogle Scholar
  56. Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobiologie 57: 389–407.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jonathan Charles Taylor
    • 1
  • Jean Prygiel
    • 2
  • Andre Vosloo
    • 1
  • Pieter A. de la Rey
    • 1
  • Leon van Rensburg
    • 1
  1. 1.School of Environmental Sciences and DevelopmentNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Mission Ecologie du MilieuAgence de l’Eau Artois-PicardieDouai CedexFrance

Personalised recommendations