, Volume 591, Issue 1, pp 5–24 | Cite as

Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review

  • W. F. de BoerEmail author
Soft-Bottom Near-Shore Ecosystems


This literature review summarizes the limiting factors for seagrass occurrence, and the effect positive feedbacks in seagrass systems have on these threshold levels. Minimum water depth is mainly determined by wave orbital velocity, tide and wave energy; and maximum depth by light availability. Besides these, other limiting factors occur, such as an upper current velocity threshold, above which seagrasses are eroded, or a lower water current velocity threshold below which carbon exchange is limiting. In some locations organic matter content, sulphide concentration or nutrient availability are limiting. N-limitation is mainly reported from temperate terrigenous sediments, and P-limitation from tropical carbonate sediments. However, limiting factors sometimes change over the year, switching from light limiting to N- or P-limiting, and show at times regional variation. The effect seagrasses have on current reduction, trapping sediment and decreasing resuspension can lead to several changes in both the sediment and the water column. In the sediment, an increase in nutrient availability has been reported, and increases in organic matter, sediment height increases, and burial of the seagrasses. In the water column the effect is a reduction of the turbidity through a decrease of the sediment load, decreasing the attenuation coefficient, thereby increasing light availability. Due to the large effect light availability has on seagrass occurrence, the effect of an improvement of the light conditions by a reduction of the turbidity by seagrasses is probably the most important positive feedback in seagrass systems. The latter effect should therefore be incorporated in models that try to understand or predict seagrass changes. Generalization are difficult due a lack of studies that try to find relationships between seagrass architecture and sediment trapping (studying both turbidity reduction and nutrient increase) on a global level under a variety of different conditions. Areas for research priorities are identified.


Water current velocity Nutrient limitation Sediment trapping Resuspension Turbidity Light 



I would like to thanks the participants of the Open Science Meeting III, 2005 at Yogyakarta, and two anonymous reviewers for their valuable comments that have contributed to the improvement of the original manuscript.


  1. Abal, E. G. & W. C. Dennison, 1996. Seagrass depth range and water quality in Southern Moreton Bay, Queensland, Australia. Marine and Freshwater Research 47: 763–771.CrossRefGoogle Scholar
  2. Aberle, J., V. Nikora & R. Walters, 2004. Effects of bed material properties on cohesive sediment erosion. Marine Geology 207: 83–93.CrossRefGoogle Scholar
  3. Agawin, N. S. R., C. M. Duarte & M. D. Fortes, 1996. Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): In situ experimental evidence. Marine Ecology Progress Series 138: 233–243.Google Scholar
  4. Alcoverro, T., C. M. Duarte & J. Romero, 1995. Annual growth dynamics of Posidonia oceanica: contribution of large scale versus local factors to seasonality. Marine Ecology Progress Series 120: 203–210.Google Scholar
  5. Alcoverro, T., J. Romero, C. M. Duarte & N. I. Lopez, 1997. Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Marine Ecology Progress Series 146: 155–161.Google Scholar
  6. Armitage, A. R., T. A. Frankovich, K. L. Jr. Heck & J. W. Fourqurean, 2005. Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries 28: 422–434.Google Scholar
  7. Asmus, H. & R. Asmus, 2000. Material exchange and food web of seagrass beds in the Sylt-Romo Bight: How significant are community changes at the ecosystem level? Helgoland Marine Research 54: 137–150.CrossRefGoogle Scholar
  8. Auby, I. & P. J. Labourg, 1996. Seasonal dynamics of Zostera noltii Hornem in the bay of Arcachon (France). Journal of Sea Research 35: 269–277.CrossRefGoogle Scholar
  9. Austen, I., T. J. Andersen & K. Edelvang, 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal a mudflat, the Danish Wadden Sea. Estuarine, Coastal and Shelf Science 49: 99–111.CrossRefGoogle Scholar
  10. Bell, S. S., B. D. Robbins & S. L. Jensen, 1999. Gap dynamics in a seagrass landscape. Ecosystems 2: 493–504.CrossRefGoogle Scholar
  11. Best, E. P. H., C. P. Buzzelli, S. M. Bartell, R. L. Wetzel, W. A. Boyd, R. D. Doyle & K. R. Campbell, 2001. Modeling submersed macrophyte growth in relation to underwater light climate: Modeling approaches and application potential. Hydrobiologia 444: 43–70.CrossRefGoogle Scholar
  12. Boese, B. L., B. D. Robbins & G. Thursby, 2005. Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary. Botanica Marina 48: 274–283.CrossRefGoogle Scholar
  13. Boon, P. I., 1986. Nitrogen pools in seagrass beds of Cymodocea serrulata and Zostera capricorni of Moreton Bay Australia. Aquatic Botany 25: 1–20.CrossRefGoogle Scholar
  14. Brun, F. G., J. J. Vergara, I. Hernandez & J. L. Perez-Llorens, 2005. Evidence for vertical growth in Zostera noltii Hornem. Botanica Marina 48: 446–450.CrossRefGoogle Scholar
  15. Burke, M. K., W. C. Dennison & K. A. Moore, 1996. Non-structural carbohydrate reserves of eelgrass Zostera marina. Marine Ecology Progress Series 137: 195–201.Google Scholar
  16. Cambridge, M. L., A. W. Chiffings, C. Brittan, L. Moore & A. J. McComb, 1986. The loss of seagrass in Cockburn Sound western Australia II; Possible causes of seagrass decline. Aquatic Botany 24: 269–286.CrossRefGoogle Scholar
  17. Campbell, S., 2001. Ammonium requirements of fast-growing ephemeral macroalgae in a nutrient-enriched marine embayment (Port Phillip Bay, Australia). Marine Ecology Progress Series 209: 99–107.Google Scholar
  18. Campbell, S. J. & L. J. McKenzie, 2004. Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuarine Coastal and Shelf Science 60: 477–490.CrossRefGoogle Scholar
  19. Cappucci, S., L. Amos, T. Hosoe & G. Umgiesser, 2004. A numerical model to evaluate the factors controlling the evolution of intertidal mudflats in Venice Lagoon, Italy. Journal of Marine Systems 51: 257–280.CrossRefGoogle Scholar
  20. Cardoso, P. G., M. A. Pardal, A. I. Lillebo, S. M. Ferreira, D. Raffaelli & J. C. Marques, 2004. Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. Journal of Experimental Marine Biology and Ecology 302: 233–248.CrossRefGoogle Scholar
  21. Carper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediment in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 1763–1767.Google Scholar
  22. Carruthers, T.-J. B., W. C. Dennison, B. J. Longstaff, M. Waycott, E. G. Abal, L. J. McKenzie & W.-J. L. Long, 2002. Seagrass habitats of northeast Australia: Models of key processes and controls. Bulletin of Marine Science 71: 1153–1169.Google Scholar
  23. Ceccherelli, G. & F. Cinelli, 1999. A pilot study of nutrient enriched sediments in a Cymodocea nodosa bed invaded by the introduced alga Caulerpa taxifolia. Botanica Marina 42: 409–417.CrossRefGoogle Scholar
  24. Chambers, P. A., 1987. Nearshore occurrence of submersed aquatic macrophytes in relation to wave action. Canadian Journal of Fisheries and Aquatic Sciences 44: 1666–1669.Google Scholar
  25. Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249–257.CrossRefGoogle Scholar
  26. Cowan, J. L. W., J. R. Pennock & W. R. Boynton, 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): Regulating factors and ecological significance. Marine Ecology Progress Series 141: 229–245.Google Scholar
  27. Daby, D., 2003. Effects of seagrass bed removal for tourism purposes in a Mauritian bay. Environmental Pollution 125: 313–324.PubMedCrossRefGoogle Scholar
  28. Dauby, P., A. J. Bale, N. Bloomer, C. Canan, R. D. Ling, A. Norro, J. E. Robertson, J. M. Theate, A. J. Watson & M. Frankignoulle, 1995. Particle fluxes over a Mediterranean seagrass bed: A one year case study. Marine Ecology Progress Series 126: 233–246.Google Scholar
  29. Davis, B. C. & J. W. Fourqurean, 2001. Competition between the tropical alga, Halimeda incrassata, and the seagrass, Thalassia testudinum. Aquatic Botany 71: 217–232.CrossRefGoogle Scholar
  30. de Boer, W. F., 2000. Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem in Mozambique. Aquatic Botany 66: 225–239.CrossRefGoogle Scholar
  31. de Boer, W. F. & H. H. T. Prins, 2002a. Human exploitation and benthic community structure on a tropical intertidal flat. Journal of Sea Research 48: 225–240.CrossRefGoogle Scholar
  32. de Boer, W. F. & H. H. T. Prins, 2002b. The community structure of a tropical intertidal mudflat under human exploitation. ICES Journal of Marine Sciences 59: 1237–1247.CrossRefGoogle Scholar
  33. de Boer, W. F., A. M. P. van Schie, D. F. Jocene, A. B. P. Mabote & A. Guissamulo, 2001. The impact of human presence on the shorebird community structure at a tropical intertidal mudflat. Environmental Biology of Fishes 61: 213–229.CrossRefGoogle Scholar
  34. Defew, E. C., T. J. Tolhurst & D. M. Paterson, 2002. Site-specific features influence sediment stability of intertidal flats. Hydrology and Earth System Sciences 6: 971–981.Google Scholar
  35. Duarte, C. M., 1989. Temporal biomass variability and production/biomass relationships of seagrass communities. Marine Ecology Progress Series 51: 269–276.Google Scholar
  36. Duarte, C. M., 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.CrossRefGoogle Scholar
  37. Duarte, C. M., 1992. Nutrient concentration of aquatic plants: Patterns across species. Limnology and Oceanography 37: 882–884.CrossRefGoogle Scholar
  38. Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.Google Scholar
  39. Duarte, C. M., M. A. Hemminga & N. Marbà, 1996. Growth and population dynamics of Thalassodendron ciliatum in a Kenyan back-reef lagoon. Aquatic Botany 55: 1–11.CrossRefGoogle Scholar
  40. Duarte, C. M., J. Terrados, S. R. Agawin-Nona, M. D. Fortes, S. Bach & W. J. Kenworthy, 1997. Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology Progress Series 147: 285–294.Google Scholar
  41. Eckman, J. E., D. O. Duggins & A. T. Sewell, 1989. Ecology of understory kelp environments i. Effects of kelps on flow and particle transport near the bottom. Journal of Experimental Marine Biology and Ecology 129: 173–188.CrossRefGoogle Scholar
  42. Erftemeijer, P. L. A., 1994. Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia, Bulletin of Marine Science 54: 403–419.Google Scholar
  43. Erftemeijer, P. L. A. & J. J. Middelburg, 1993. Sediment–nutrient interactions in tropical seagrass beds: A comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Marine Ecology Progress Series 102: 187–198.Google Scholar
  44. Erftemeijer, P. L. A., J. Stapel, J. E. Smekens-Marret & M. E. Drossaert-Wim, 1994. The limited effect of in situ phosphorus and nitrogen additions to seagrass beds on carbonate and terrigenous sediments in South Sulawesi, Indonesia. Journal of Experimental Marine Biology and Ecology 182:123–140.CrossRefGoogle Scholar
  45. Ferdie, M. & J. W. Fourqurean, 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography 49: 2082–2094.CrossRefGoogle Scholar
  46. Fisher, R. & M. J. Sheaves, 2003. Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows. Hydrobiologia 495: 143–158.CrossRefGoogle Scholar
  47. Fonseca, M. S. & S. S. Bell, 1998. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Marine Ecology Progress Series 171: 109–121.Google Scholar
  48. Fonseca, M. S. & J. S. Fisher, 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Marine Ecology Progress Series 29:15–22.Google Scholar
  49. Fonseca, M. S., J. S. Fisher, J. C. Zieman & G. W. Thayer, 1982. Influence of the seagrass Zostera marina on current flow. Estuarine Coastal and Shelf Science 15: 351–364.CrossRefGoogle Scholar
  50. Fonseca, M. S. & W. J. Kenworthy, 1987. Effects of current on photosynthesis and distribution of seagrasses. Aquatic Botany 27: 59–78.CrossRefGoogle Scholar
  51. Fonseca, M., P. E. Whitfield, N. M. Kelly & S. S. Bell, 2002. Modeling seagrass landscape pattern and associated ecological attributes. Ecological Applications 12: 218–237.CrossRefGoogle Scholar
  52. Fonseca, M. S., J. C. Zieman, G. W. Thayer & J. S. Fisher, 1983. The role of current velocity in structuring eelgrass Zostera marina. Estuarine, Coastal and Shelf Science 17: 367–380.CrossRefGoogle Scholar
  53. Ford, R. B., S. F. Thrush & P. K. Probert, 2001. The interacting effect of hydrodynamics and organic matter on colonization: A soft-sediment example. Estuarine, Coastal and Shelf Science 52: 705–714.CrossRefGoogle Scholar
  54. Fourqurean, J. W. & J. C. Zieman, 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61: 229–245.CrossRefGoogle Scholar
  55. Fourqurean, J. W. & Y. Cai, 2001. Arsenic and phosphorus in seagrass leaves from the Gulf of Mexico. Aquatic Botany 71: 247–258.CrossRefGoogle Scholar
  56. Fourqurean, J. W., J. C. Zieman & G. V. Powell, 1992. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Marine Biology 114: 57–65.Google Scholar
  57. Furukawa, K., E. Wolanski & H. Mueller, 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science 44: 301–310.CrossRefGoogle Scholar
  58. Gacia, E. & C. M. Duarte, 2001. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuarine Coastal and Shelf Science 52: 505–514.CrossRefGoogle Scholar
  59. Gacia, E., C. M. Duarte, N. Marbà, J. Terrados, H. Kennedy, M. D. Fortes & N. H. Tri, 2003. Sediment deposition and production in SE-Asia seagrass meadows. Estuarine, Coastal and Shelf Science 56: 909–919.CrossRefGoogle Scholar
  60. Gacia, E., T. C. Granata & C. M. Duarte, 1999a. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquatic Botany 65: 255–268.CrossRefGoogle Scholar
  61. Gacia, E., M. M. Littler & D. S. Littler, 1999b. An experimental test of the capacity of food web interactions (fish-epiphytes-seagrasses) to offset the negative consequences of eutrophication on seagrass communities. Estuarine Coastal and Shelf Science 48: 757–766.CrossRefGoogle Scholar
  62. Gambi, M. C., A. R. M. Nowell & P. A. Jumars, 1990. Flume observations on flow dynamics in Zostera marina eelgrass beds. Marine Ecology Progress Series 61: 159–169.Google Scholar
  63. Gonzalez, C. J. M., J. T. Bayle, J. L. Sanchez-Lizaso, C. Valle, P. Sanchez-Jerez & J. M. Ruiz, 2005. Recovery of deep Posidonia oceanica meadows degraded by trawling. Journal of Experimental Marine Biology and Ecology 320: 65–76.CrossRefGoogle Scholar
  64. Gras, A. F., M. S. Koch & C. J. Madden, 2003. Phosphorus uptake kinetics of a dominant tropical seagrass Thalassia testudinum. Aquatic Botany 76: 299–315.CrossRefGoogle Scholar
  65. Harlin, M. M. & M. B. Thorne, 1981. Nutrient enrichment of seagrass beds in a Rhode-island USA coastal lagoon. Marine Biology 65: 221–230.CrossRefGoogle Scholar
  66. Hays, G., 2005. Effect of nutrient availability grazer assemblage and seagrass source population on the interaction between Thalassia testudinum (turtle grass) and its algal epiphytes. Journal of Experimental Marine Biology and Ecology 314: 53–68.CrossRefGoogle Scholar
  67. Healey, D. & K. A. Hovel, 2004. Seagrass bed patchiness effects on epifaunal communities in San Diego Bay, USA. Journal of Experimental Marine Biology and Ecology 313: 155–174.CrossRefGoogle Scholar
  68. Hemminga, M. A., N. Marbà & J. Stapel, 1999. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquatic Botany 65: 141–158.CrossRefGoogle Scholar
  69. Herman, M. J., J. Middelburg & H. R. Heip, 2001. Benthic community structure and sediment processes on an intertidal flat: results from the Ecoflat project. Continental Shelf Research 21: 2055–2071.CrossRefGoogle Scholar
  70. Herzka, S. Z. & K. H. Dunton, 1998. Light and carbon balance in the seagrass Thalassia testudinum: Evaluation of current production models. Marine Biology 132: 711–721.CrossRefGoogle Scholar
  71. Hillman, K., A. J. McComb & D. I. Walker, 1995. The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquatic Botany 51: 1–54.CrossRefGoogle Scholar
  72. Hine, A. C., M. W. Evans, R. A. Davis, Jr. & D. F. Belknap, 1987. Depositional response to seagrass mortality along a low-energy barrier-island coast west-central Florida USA. Journal of Sedimentary Petrology 57: 431–439.Google Scholar
  73. Holmer, M., F. O. Andersen, S. L. Nielsen & T. S. Boschker-Henricus, 2001. The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquatic Botany 71: 1–17.CrossRefGoogle Scholar
  74. Huong, T. T. L., J. E. Vermaat, J. Terrados, T. N. Van, C. M. Duarte, J. Borum & N. H. Tri, 2003. Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquatic Botany 75: 147–157.CrossRefGoogle Scholar
  75. Hootsmans, M. J. M., J. E. Vermaat & W. van Vierssen, 1987. Seed-bank development germination and early seedling survival of two seagrass species from the Netherlands Zostera-marina L. and Zostera-noltii Hornem. Aquatic Botany 28: 275–286.CrossRefGoogle Scholar
  76. Hughes, A. R., K. J. Bando, L. F. Rodriguez & S. L. Williams, 2004. Relative effects of grazers and nutrients on seagrasses: A meta-analysis approach. Marine Ecology Progress Series 282: 87–99.CrossRefGoogle Scholar
  77. Isaksen, M. F. & K. Finster, 1996. Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Marine Ecology Progress Series 137: 187–194.Google Scholar
  78. Jagtap, T. G., 1996. Some quantitative aspects of structural components of seagrass meadows from the Southeast coast of India. Botanica Marina 39: 39–45.CrossRefGoogle Scholar
  79. Kemp, W. M., R. Batiuk, R. Bartleson, P. Bergstrom, V. Carter, C. L. Gallegos, W. Hunley, L. Karrh, E. W. Koch, J. M. Landwehr, K. A. Moore, L. Murray, M. Naylor, N. B. Rybicki, J. C. Stevenson & D. J. Wilcox, 2004. Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors. Estuaries 27: 363–377.Google Scholar
  80. Kendrick, G. A., N. Marbà & C. M. Duarte, 2005. Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuarine Coastal and Shelf Science 65: 717–725.CrossRefGoogle Scholar
  81. Kenworthy, W. J. & M. S. Fonseca, 1992. The use of fertilizer to enhance growth of transplanted seagrasses Zostera marina L. and Halodule wrightii Aschers. Journal of Experimental Marine Biology and Ecology 163: 141–161.CrossRefGoogle Scholar
  82. Keuskamp, D., 2004. Limited effects of grazer exclusion on the epiphytes of Posidonia sinuosa in South Australia. Aquatic Botany 78: 3–14.CrossRefGoogle Scholar
  83. Koch, E. W., 1994. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Marine Biology Berlin 118: 767–776.CrossRefGoogle Scholar
  84. Koch, E. W., 1999. Sediment resuspension in a shallow Thalassia testudinum banks ex König bed. Aquatic Botany 65: 269–280.CrossRefGoogle Scholar
  85. Koch, E. W., 2001. Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.CrossRefGoogle Scholar
  86. Koch, E. W. & S. Beer, 1996. Tides, light and the distribution of Zostera marina in Long Island Sound, USA. Aquatic Botany 53: 97–107.CrossRefGoogle Scholar
  87. Koch, E. W. & G. Gust, 1999. Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum. Marine Ecology Progress Series 28: 63–72.Google Scholar
  88. Lee, K. S. & K. H. Dunton, 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Marine Ecology Progress Series 196: 39–48.Google Scholar
  89. Lee, K. S., F. T. Short & D. M. Burdick, 2004. Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three New England estuaries. Aquatic Botany 78: 197–216.CrossRefGoogle Scholar
  90. Lepoint, G., S. Millet, P. Dauby, S. Gobert & J. M. Bouquegneau, 2002. Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Marine Ecology Progress Series 237: 87–96.Google Scholar
  91. Livingston, R. J., S. E. McGlynn & X. Niu, 1998. Factors controlling seagrass growth in a gulf coastal system: Water and sediment quality and light. Aquatic Botany 60: 135–159.CrossRefGoogle Scholar
  92. Louda, J. W., J. W. Loitz, A. Melisiotis & W. H. Orem, 2004. Potential sources of hydrogel stabilization of Florida Bay lime mud sediments and implications for organic matter preservation. Journal of Coastal Research 20: 448–463.CrossRefGoogle Scholar
  93. Lund, H. L. C., M. Pejrup, J. Valeur & A. Jensen, 1993. Gross sedimentation rates in the North Sea-Baltic Sea transition: Effects of stratification, wind energy transfer, and resuspension. Oceanologica Acta 16: 205–212.Google Scholar
  94. Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.CrossRefGoogle Scholar
  95. Manzanera, M., M. Perez & J. Romero, 1998. Seagrass mortality due to oversedimentation: An experimental approach. Journal of Coastal Conservation 4: 67–70.Google Scholar
  96. Marbà, N. & C. M. Duarte, 1994. Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Marine Ecology Progress Series 107: 307–311.Google Scholar
  97. Marbà, N. & C. M. Duarte, 1995. Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migration. Journal of Ecology 83: 381–389.CrossRefGoogle Scholar
  98. Marbà, N. & C. M. Duarte, 2001. Growth and sediment space occupation by seagrass Cymodocea nodosa roots. Marine Ecology Progress Series 224: 291–298.CrossRefGoogle Scholar
  99. Marbà, N., J. Cebrian, S. Enriquez & C. M. Duarte, 1994. Migration of large-scale subaqueous bedforms measured with seagrasses (Cymodocea nodosa) as tracers. Limnology and Oceanography 39: 126–133.CrossRefGoogle Scholar
  100. Marbà, N., J. Cebrian, S. Enriquez & C. M. Duarte, 1996. Growth patterns of western Mediterranean seagrasses: Species-specific responses to seasonal forcing. Marine Ecology Progress Series 133: 203–215.Google Scholar
  101. Mateo, M. A., J. Romero, M. Perez, M. M. Littler & D. S. Littler, 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuarine, Coastal and Shelf Science 44: 103–110.CrossRefGoogle Scholar
  102. McGlathery, K. J., P. Berg & R. Marino, 2001. Using porewater profiles to assess nutrient availability in seagrass-vegetated carbonate sediments. Biogeochemistry 56: 239–263.CrossRefGoogle Scholar
  103. McGlathery, K. J., R. W. Howarth & R. Marino, 1992. Nutrient limitation of the macroalga Penicillus capitatus associated with subtropical seagrass meadows in Bermuda. Estuaries 15: 18–25.CrossRefGoogle Scholar
  104. McGlathery, K. J., R. Marino & R. W. Howarth, 1994. Variable rates of phosphate uptake by shallow marine carbonate sediments: Mechanisms and ecological significance. Biogeochemistry 25: 127–146.CrossRefGoogle Scholar
  105. McKinney, K. & A. Jaklin, 2001. Sediment accumulation in a shallow-water meadow carpeted by a small erect bryozoan. Sedimentary Geology 145: 397–410.CrossRefGoogle Scholar
  106. McMahon, K. & D. I. Walker, 1998. Fate of seasonal, terrestrial nutrient inputs to a shallow seagrass dominated embayment. Estuarine Coastal and Shelf Science 46: 15–25.CrossRefGoogle Scholar
  107. Mellors, J., H. Marsh & M. Waycott, 2002. Testing the sediment-trapping paradigm of seagrass: Do seagrass influence nutrient status and sediment structure in tropical intertidal environments. Bulletin of Marine Science 71: 1215–1226.Google Scholar
  108. Moore, K. A., H. A. Neckles & R. J. Orth, 1996. Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay. Marine Ecology Progress Series 142: 247–259.Google Scholar
  109. Moore, K. A., R. J. Orth & J. F. Nowak, 1993. Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: Effects of light, oxygen and sediment burial. Aquatic Botany 45: 79–91.CrossRefGoogle Scholar
  110. Moore, K. A., R. L. Wetzel & R. J. Orth, 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. Journal of Experimental Marine Biology and Ecology 215: 115–134.CrossRefGoogle Scholar
  111. Morell, J. M. & J. E. Corredo, 1993. Sediment nitrogen trapping in a mangrove lagoon. Estuarine Coastal and Shelf Science 37: 203–212.CrossRefGoogle Scholar
  112. Moriarty, D. J. W. & P. I. Boon, 1989. Interactions of seagrass with sediment and water. In Larkum, A. W. D. & S. A. Sheppard (eds), Biology of Seagrasses. Elsevier, Amsterdam, 500–535Google Scholar
  113. Morris, L. J. & R. W. Viknstein, 2004. The demise and recovery of seagrass in the northern Indian River Lagoon, Florida. Estuaries 27: 915–922Google Scholar
  114. Mumby, P. J., A. J. Edwards, J. E. Arias-Gonzalez, K. C. Lindeman, P. G. Blackwell, A. Gall, M. I. Gorczynska, A. R. Harborne, C. L. Pescod, H. Renken, C. C. C. Wabnitz & G. Llewellyn, 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean, Nature 427: 533–536.PubMedCrossRefGoogle Scholar
  115. Nelson, T. A. & J. R. Waaland, 1997. Seasonality of eelgrass, epiphyte, and grazer biomass and productivity in subtidal eelgrass meadows subjected to moderate tidal amplitude. Aquatic Botany 56: 51–74.CrossRefGoogle Scholar
  116. Olesen, B., 1996. Regulation of light attenuation and eelgrass Zostera marina depth distribution in a Danish embayment. Marine Ecology Progress Series 134: 187–194.Google Scholar
  117. Orth, R. J., M. L. Luckenbach, S. R. Marion, K. A. Moore & D. J. Wilcox, 2006. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquatic Botany 84: 26–36.CrossRefGoogle Scholar
  118. Parchure, T. M., A. J. Mehta, 1985. Erosion of soft cohesive sediment deposits. Journal of Hydraulic Engineering 111: 1308–1326.CrossRefGoogle Scholar
  119. Pedersen, M. F., C. M. Duarte & J. Cebrian, 1997. Rates of changes in organic matter and nutrient stocks during seagrass Cymodocea nodosa colonization and stand development. Marine Ecology Progress Series 159: 29–36.Google Scholar
  120. Peralta, G., T. J. Bouma, J. van Soelen, J. L. Perez-Llorens & I. Hernandez, 2003. On the use of sediment fertilization for seagrass restoration: A mesocosm study on Zostera marina L. Aquatic Botany 75: 95–110.CrossRefGoogle Scholar
  121. Perez, M. & J. Romero, 1992. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquatic Botany 43: 51–62.CrossRefGoogle Scholar
  122. Perez, M., C. M. Duarte, J. Romero, J. K. Sand & T. Alcoverro, 1994. Growth plasticity in Cymodocea nodosa stands: The importance of nutrient supply. Aquatic Botany 47: 249–264.CrossRefGoogle Scholar
  123. Perez, M., M. A. Mateo, T. Alcoverro & J. Romero, 2001. Variability in detritus stocks in beds of the seagrass Cymodocea nodosa. Botanica Marina 44: 523–531.CrossRefGoogle Scholar
  124. Piazzi, L., D. Balata & F. Cinelli, 2002. Epiphytic macroalgal assemblages of Posidonia oceanica rhizomes in the western Mediterranean. European Journal of Phycology 37: 69–76.CrossRefGoogle Scholar
  125. Pinckney, J. L. & M. F. Micheli, 1998. Microalgae on seagrass mimics: Does epiphyte community structure differ from live seagrasses? Journal of Experimental Marine Biology and Ecology. 221: 59–70.CrossRefGoogle Scholar
  126. Plus, M., A. Chapelle, A. Menesguen, J. M. Deslous-Paoli & I. Auby, 2003. Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): Application to the Thau lagoon (French Mediterranean coast). Ecological Modelling 161: 213–238.CrossRefGoogle Scholar
  127. Polte, P., A. Schanz & H. Asmus, 2005. The contribution of seagrass beds (Zostera noltii) to the function of tidal flats as a juvenile habitat for dominant, mobile epibenthos in the Wadden Sea. Marine Biology 147: 813–822.CrossRefGoogle Scholar
  128. Powell, G., V, J. W. Fourqurean, W. J. Kenworthy & J. C. Zieman, 1991. Bird colonies cause seagrass enrichment in a subtropical estuary observational and experimental evidence. Estuarine Coastal and Shelf Science 32: 567–580.CrossRefGoogle Scholar
  129. Preen, A. R., W.-J. L. Long & R. G. Coles, 1995. Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany 52: 3–17.CrossRefGoogle Scholar
  130. Ramirez, G. P., A. Lot, C. M. Duarte, J. Terrados & N. S. R. Agawin, 1998. Bathymetric distribution, biomass and growth dynamics of intertidal Phyllospadix scouleri and Phyllospadix torreyi in Baja California (Mexico). Marine Ecology Progress Series 173: 13–23.Google Scholar
  131. Rietkerk, M., S. C. Dekker, P. C. de Ruiter & J. van de Koppel, 2004. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305: 1926–1929.PubMedCrossRefGoogle Scholar
  132. Rose, C. D. & C. J. Dawes, 1999. Effects of community structure on the seagrass Thalassia testudinum. Marine Ecology Progress Series 1999: 83–95.Google Scholar
  133. Ruiz, J. M. & J. Romero, 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Marine Ecology Progress Series 107–120.Google Scholar
  134. Ruiz, J. M. & J. Romero, 2003. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Marine Pollution Bulletin 46: 1523–1533PubMedCrossRefGoogle Scholar
  135. Rysgaard, S., P. N. Risgaard & N. P. Sloth 1996. Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in southern France. Hydrobiologia 329: 133–141.CrossRefGoogle Scholar
  136. Sfriso, A. & A. Marcomini, 1999. Macrophyte production in a shallow coastal lagoon. Part II. Coupling with sediment, SPM and tissue carbon, nitrogen and phosphorus concentrations. Marine Environmental Research 47: 285–309.CrossRefGoogle Scholar
  137. Sheridan, P., G. McMahan, K. Hammerstrom & W. Pulich, Jr., 1998. Factors affecting restoration of Halodule wrightii to Galveston Bay, Texas. Restoration Ecology 6: 144–158.CrossRefGoogle Scholar
  138. Short, F. T., 1987. Effects of sediment nutrients on seagrasses literature review and mesocosm experiment. Aquatic Botany 27: 41–58.CrossRefGoogle Scholar
  139. Short, F. T. & D. B. Burdick, 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730–739.CrossRefGoogle Scholar
  140. Short, F. T. & E. S. Wyllie, 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 3: 17–27.CrossRefGoogle Scholar
  141. Short, F. T., M. W. Davis, R. A. Gibson & C. F. Zimmermann, 1985. Evidence for phosphorus limitation in carbonate sediments of the seagrass Syringodium filiforme. Estuarine Coastal and Shelf Science 20: 419–430.CrossRefGoogle Scholar
  142. Short, F. T., W. C. Dennison & D. G. Capone, 1990. Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Marine Ecology Progress Series 62: 169–174.Google Scholar
  143. Short, F. T., J. Montgomery, C. F. Zimmermann & C. A. Short, 1993. Production and nutrient dynamics of a Syringodium filiforme Kutz. seagrass bed in Indian River Lagoon, Florida. Estuaries 16: 323–334.CrossRefGoogle Scholar
  144. Sintes, T., N. Marbà, C. M. Duarte & G. A. Kendrick, 2005. Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108: 165–175.CrossRefGoogle Scholar
  145. Slim, F. J., M. A. Hemminga, E. Cocheret de la Moriniere & G. van der Velde, 1996. Tidal exchange of macrolitter between a mangrove forest and adjacent seagrass beds (Gazi Bay, Kenya). Netherlands Journal of Sea Research 30: 119–128.Google Scholar
  146. Stapel, J., T. L. Aarts, B. H. M. van Duynhoven, de J. D. Groot, P. H. V. van den Hoogen & M. A. Hemminga, 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series 134: 195–206.Google Scholar
  147. Stapel, J., R. Manuntun & M. A. Hemminga, 1997. Biomass loss and nutrient redistribution in an Indonesian Thalassia hemprichii seagrass bed following seasonal low tide exposure during daylight. Marine Ecology Progress Series 148: 251–262.Google Scholar
  148. Strand, J. A. & E. B. Weisner-Stefan, 1996. Wave exposure related growth of epiphyton: Implications for the distribution of submerged macrophytes in eutrophic lakes. Hydrobiologia 325: 113–119.CrossRefGoogle Scholar
  149. Teeter, A. M., B. H. Johnson, C. Berger, G. Stelling, N. W. Scheffner, M. H. Garcia & T. M. Parchure, 2001. Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated areas (lakes, reservoirs, estuaries and lagoons). Hydrobiologia 444: 1–23.CrossRefGoogle Scholar
  150. Terrados, J. & C. M. Duarte, 2000. Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow. Journal of Experimental Marine Biology and Ecology 243: 45–53.CrossRefGoogle Scholar
  151. Terrados, J. & J. D. Ros, 1995. Temperature effects on photosynthesis and depth distribution of the seagrass Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: The Mar Menor (SE Spain). Marine Ecology 16: 133–144.Google Scholar
  152. Terrados, J., S. R. Agawin-Nona, C. M. Duarte, M. D. Fortes, N. L. Kamp & J. Borum, 1999. Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines. Aquatic Botany 65: 123–139.CrossRefGoogle Scholar
  153. Terrados, J., C. M. Duarte, M. D. Fortes, J. Borum, N. S. R. Agawin, S. Bach, U. Thampanya, N. L. Kamp, W. J. Kenworthy, H. O. Geertz & J. Vermaat, 1998. Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia. Estuarine Coastal and Shelf Science 46: 757–768.CrossRefGoogle Scholar
  154. Terrados, J., U. Thampanya, N. Srichai, P. Kheowvongsri, O. Geertz-Hansen, S. Boromthanarath, N. Panapitukkul & C. M. Duarte, 1997. The effect of increased sediment accretion on the survival and growth of Rhizophora apiculata seedlings. Estuarine, Coastal and Shelf Science 45: 1–5.CrossRefGoogle Scholar
  155. Touchette, B. W. & J. M. Burkholder, 2000. Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250: 133–167.PubMedCrossRefGoogle Scholar
  156. Udy, J. W. & W. C. Dennison, 1997. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. Journal of Experimental Marine Biology and Ecology 217: 253–277.CrossRefGoogle Scholar
  157. Udy, J. W., W. C. Dennison, W. J. Lee-Long & L. J. McKenzie, 1999. Responses of seagrass to nutrients in the Great Barrier Reef, Australia. Marine Ecology Progress Series 185: 257–271.Google Scholar
  158. Valiela, I., J. Costa, K. Foreman, J. M. Teal, B. Howes & D. Aubrey, 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10: 177–198CrossRefGoogle Scholar
  159. Valiela, I., S. Mazzilli, J. L. Bowen, K. D. Kroeger, M. L. Cole, G. Tomasky & T. Isaji 2004. ELM, an estuarine nitrogen loading model: Formulation and verification of predicted concentrations of dissolved inorganic nitrogen. Water Air and Soil Pollution 157: 365–391.CrossRefGoogle Scholar
  160. van Duin, E. H. S., G. Blom, F. J. Los, R. Maffione, R. Zimmerman, C. F. Cerco, M. Dortch & P. H. Best-Elly, 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444: 25–42.CrossRefGoogle Scholar
  161. van Katwijk, M. M., G.-H. W. Schmitz, A. P. Gasseling & P. H. van Avesaath, 1999. Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology Progress Series 190: 155–165.Google Scholar
  162. van Keulen, M. & M. A. Borowitzka, 2002. Comparison of water velocity profiles through morphologically dissimailar seagrasses measured with a simple and inexpensive current meter. Bulletin of Marine Science 71: 1257–1267.Google Scholar
  163. Vermaat, J. E. & F. C. A. Verhagen, 1996. Seasonal variation in the intertidal seagrass Zostera noltii Hornem: coupling demographic and physiological patterns. Aquatic Botany 52: 259–281.CrossRefGoogle Scholar
  164. Vermaat, J. E., N. S. R. Agawin, C. M. Duarte, M. D. Fortes, N. Marbà & J. S. Uri, 1995. Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed. Marine Ecology Progress Series 124: 215–225.Google Scholar
  165. Vermaat, J. E., N. S. R. F. Agawin, J. S. Uri, D. M. Duarte, M. Marbà & W. van Vierssen, 1997. The capacity of seagrasses to survive increased turbidity and siltation; The significance of growth form and light use. Ambio 26: 499–504.Google Scholar
  166. Vermaat, J. E., J. A. J. Beijer, R. Gijlstra, M. J. M. Hootsmans, C. J. M. Philippart, N. W. van den Brink & W. van Vierssen, 1993. Leaf dymanics and standing stocks of intertidal Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Ascherson on the Banc d’Arguin (Mauritania). Hydrobiologia 258: 59–72.CrossRefGoogle Scholar
  167. Vermaat, J. E., L. Santamaria & P. J. Roos, 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv fuer Hydrobiologie 148: 549–562.Google Scholar
  168. Walters, K. & D. J. W. Moriarty, 1993. The effects of complex trophic interactions on a marine microbenthic community. Ecology 74: 1475–1489.CrossRefGoogle Scholar
  169. Waycott, M., B. J. Longstaff & J. Mellors, 2005. Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions. Marine Pollution Bulletin 51: 343–350.PubMedCrossRefGoogle Scholar
  170. Welsh, D. T, M. Bartoli, D. Nizzoli, G. Castaldelli, S. A. Riou & P. Viaroli 2000. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecology Progress Series 208: 65–77.Google Scholar
  171. Widdows, J., A. Blauw, C. H. R. Heip, P. M. J. Herman, C. H. Lucas, J. J. Middelburg, S. Schmidt, M. D. Brinsley & H. Verbeek, 2004. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. Marine Ecology Progress Series 274: 41–56.CrossRefGoogle Scholar
  172. Williams, S. L., 1990. Experimental studies of caribbean seagrass bed development. Ecological Monographs 60: 449–469.CrossRefGoogle Scholar
  173. Wolanski, E., 1992. Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247: 141–162.CrossRefGoogle Scholar
  174. Worm, B. & T. B. H. Reusch, 2000. Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Marine Ecology Progress Series 200: 159–166.Google Scholar
  175. Zimmerman, C. & S. Alberte, 1996. Effects of lights/dark transition on carbon translocation in eelgrass Zostera marina seedlings. Marine Ecology Progress Series 136: 309.Google Scholar
  176. Zimmerman, C. & D. Mobley, 1997. Radiative transfer within seagrass canopies: impact on carbon budgets and light requirements. Proceedings SPIE 2963: 331–336.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Resource Ecology GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations