Hydrobiologia

, Volume 592, Issue 1, pp 257–270

Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment

Primary Research Paper

Abstract

Studies showing that tagged reef fish connect different habitat types are crucial for effective ecosystem management on a seascape-level, but are rare. Therefore we analysed movement of juvenile Haemulon flavolineatum and Haemulon sciurus among seagrass beds, mangroves and fossilised eroded coral shoreline. Fishes were tagged individually with external, short-term bead-tags (both species) or with internal, long-term coded wire tags (H. flavolineatum only). We also tested the hypothesis that in spatially continuous habitat types with many seemingly suitable resting sites, these fishes show high fidelity to only a small number of sites. The linear distribution range of daytime sites was 4–171 m for H. flavolineatum and 4–152 m for H. sciurus, but in agreement with our hypothesis, externally tagged fishes showed high fidelity to small spatial areas within this range: the percentage of resightings within a 10 m radius of the core area of presence (i.e. the site used most intensively) was 69% for bead-tagged H. flavolineatum, and 62% for H. sciurus during the 47-day study-period. Site fidelity was also present over a longer time span: of the 1114 coded wire tagged H. flavolineatum 51 were recaptured and 49 of them were still present at the tagging location after 163–425 days at liberty. Median linear movement within a day was small (5 m for H. flavolineatum and 8 m for H. sciurus), nonetheless, part of the bead-tagged Haemulidae moved from shoreline shelter habitats (mangroves and rocky shoreline) to adjacent seagrass beds (mean ± SD distance moved 23 ± 10 m) in the afternoon, likely to start feeding there during daylight. When comparing the habitat type occupied during the late afternoon (15:30–17:30 h) and morning (8:00–10:30 h) on two subsequent days, most movement occurred from seagrass beds back to shoreline habitats (mean distance moved 23 ± 10 m), indicating that in the morning these fishes had returned to shelter sites at the shoreline. The current study thus shows existence of connectivity between back-reef habitats through fish movement on a relatively small spatial scale.

Keywords

Mangroves Seagrass Rocky shoreline Coded wire tags Daytime activity radius Habitat connectivity 

References

  1. Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. P. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633–641.CrossRefGoogle Scholar
  2. Beets, J., L. Muehlstein, K. Haught & H. Schmitges, 2003. Habitat connectivity in coastal environments: patterns and movement of Caribbean coral reef fishes with emphasis on bluestriped grunt, Haemulon sciurus. Gulf and Caribbean Research 14: 29–42.Google Scholar
  3. Bell, T. & D. L. Kramer, 2000. Territoriality and habitat use by juvenile blue tangs, Acanthurus coeruleus. Environmental Biology of Fishes 58: 401–409.CrossRefGoogle Scholar
  4. Boström, C., E. M. Jackson & C. A. Simenstad, 2006. Seagrass landscapes and their effects on associated fauna: A review. Estuarine, Coastal and Shelf Science 68: 383–403.CrossRefGoogle Scholar
  5. Brennan, N. P., K. M. Leber, H. L. Blankenship, J. M. Ransier, & R. DeBruler, 2005. An evaluation of coded wire and elastomer tag performance in juvenile common snook under field and laboratory conditions. North American Journal of Fisheries Management 25: 437–445.CrossRefGoogle Scholar
  6. Burke, N. C., 1995. Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatum and H. sciurus, at Tobacco Caye, Belize. Environmental Biology of Fishes 42: 365–374.CrossRefGoogle Scholar
  7. Chapman, M. R. & D. L. Kramer, 2000. Movements of fishes within and among fringing coral reefs in Barbados. Environmental Biology of Fishes 57: 11–24.CrossRefGoogle Scholar
  8. Chittaro, P. M., B. J. Fryer & P. F. Sale, 2004. Discrimination of French grunts (Haemulon flavolineatum, Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. Journal of Experimental Marine Biology and Ecology 308: 169–183.CrossRefGoogle Scholar
  9. de Buisonjé, P. H. & J. I. S. Zonneveld, 1960. De kustvormen van Curaçao, Aruba en Bonaire. Natural Science Study Group Netherlands Antilles 11. Martinus Nijhoff, ‘s-Gravenhage: 1–24 + 7 plates.Google Scholar
  10. de Haan, D. & J. S. Zaneveld, 1959. Some notes on tides in Annabaai harbour, Curaçao, Netherlands Antilles. Bulletin of Marine Science of the Gulf and Caribbean 9: 224–236.Google Scholar
  11. Dorenbosch, M., M. C. Verweij, I. Nagelkerken, N. Jiddawi & G. van der Velde, 2004. Homing and daytime tidal movements of juvenile snappers (Lutjanidae) between shallow-water nursery habitats in Zanzibar, western Indian Ocean. Environmental Biology of Fishes 70: 203–209.CrossRefGoogle Scholar
  12. Field, A., 2005. Discovering Statistics Using SPSS (Second Edition). Sage Publications, London.Google Scholar
  13. Gillanders, B. M., K. W. Able, J. A. Brown, D. B. Eggleston & P. F. Sheridan, 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247: 281–295.CrossRefGoogle Scholar
  14. Helfman, G. S., J. L. Meyer & W. N. McFarland, 1982. The ontogeny of twilight migration patterns in grunts (Pisces: Haemulidae). Animal Behaviour 30: 317–326.CrossRefGoogle Scholar
  15. Helfman, G. S. & E. T. Schultz, 1984. Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour 32: 379–384.CrossRefGoogle Scholar
  16. Helfman, G. S., 1986. Behavioral responses of prey fishes during predator-prey interactions. In Feder M. E., & G. V. Lauder (eds) Predator–prey relationships. The University of Chicago Press, Chicago and London: 135–156.Google Scholar
  17. Holland, K. N., J. D. Peterson, C. G. Lowe & B. M. Wetherbee, 1993. Movements, distribution and growth rates of the white goatfish Mulloides flavolineatus in a fisheries conservation zone. Bulletin of Marine Science 52: 982–992.Google Scholar
  18. Jones, K. M. M., 2005. Home range areas and activity centres in six species of Caribbean wrasses (Labridae). Journal of Fish Biology 66: 150–166.CrossRefGoogle Scholar
  19. Kramer, D. L. & M. R. Chapman, 1999. Implications of fish home range size and relocation for marine reserves. Environmental Biology of Fishes 55: 65–79.CrossRefGoogle Scholar
  20. Krumme, U., U. Saint-Paul & H. Rosenthal, 2004. Tidal and diel changes in the structure of a nekton assemblage in small intertidal mangrove creeks in northern Brazil. Aquatic Living Resources 17: 215–229.CrossRefGoogle Scholar
  21. Kuenen, M. M. C. E. & A. O. Debrot, 1995. A quantitative study of the seagrass and algal meadows of the Spaanse Water, Curaçao, The Netherlands Antilles. Aquatic Botany 51: 291–310.CrossRefGoogle Scholar
  22. Laundré, J. W. & B. L. Keller, 1984. Home-range size of coyotes: a critical review. Journal of Wildlife Management 48: 127–139.CrossRefGoogle Scholar
  23. Layman, C. A., D. A. Arrington, R. B. Langerhans & B. R. Silliman, 2004. Degree of fragmentation affects fish assemblage structure in Andros Island (Bahamas) estuaries. Caribbean Journal of Science 40: 232–244.Google Scholar
  24. Marnane, M. J., 2000. Site fidelity and homing behaviour in coral reef cardinalfishes. Journal of Fish Biology 57: 1590–1600.CrossRefGoogle Scholar
  25. McFarland, W. N., J. C. Ogden & J. N. Lythgoe, 1979. The influence of light on the twilight migrations of grunts. Environmental Biology of Fishes 4: 9–22.CrossRefGoogle Scholar
  26. McFarland, W. N. & Z. Hillis, 1982. Observations on agonistic behavior between members of juvenile French and white grunts - Family Haemulidae. Bulletin of Marine Science 32: 255–268.Google Scholar
  27. Meyer, C. G., K. N. Holland, B. M. Wetherbee & C. G. Lowe, 2000. Movement patterns, habitat utilization, home range size and site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a marine reserve. Environmental Biology of Fishes 59: 235–242.CrossRefGoogle Scholar
  28. Moberg, F. & P. Rönnbäck, 2003. Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean & Coastal Management 46: 27–46.CrossRefGoogle Scholar
  29. Munro, J. L., 1983. Caribbean Coral Reef Fishery Resources, p. 276. Philippines: ICLARM.Google Scholar
  30. Munro, A. R., T. E. McMahon, S. A. Leathe & G. Liknes, 2003. Evaluation of batch marking small rainbow trout with coded wire tags. North American Journal of Fisheries Management 23: 600–604.CrossRefGoogle Scholar
  31. Nagelkerken, I., M. Dorenbosch, W. C. E. P. Verberk, E. Cocheret de la Morinière & G. van der Velde, 2000a. Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Marine Ecology Progress Series 202: 175–192.CrossRefGoogle Scholar
  32. Nagelkerken, I., M. Dorenbosch, W. C. E. P. Verberk, E. Cocheret de la Morinière & G. van der Velde, 2000b. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology Progress Series 194: 55–64.CrossRefGoogle Scholar
  33. Odum, E. P. & E. J. Kuenzler, 1995. Measurement of territory and home range size in birds. Auk 72: 128–137.Google Scholar
  34. Ogden, J. C. & P. R. Ehrlich, 1977. The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Marine Biology 42: 273–280.CrossRefGoogle Scholar
  35. Ogden, J. C. & J. C. Zieman, 1977. Ecological aspects of coral reef-seagrass bed contacts in the Caribbean. Proceedings of the 3rd International Coral Reef Symposium 1: 377–382.Google Scholar
  36. Ogden, J. C. & E. H. Gladfelter, 1983. Coral reefs, seagrass beds and mangroves: their interaction in the coastal zones of the Caribbean. UNESCO Reports in Marine Science 23: 6–16.Google Scholar
  37. Ogden, J. C. & T. P. Quinn, 1984. Migration in coral reef fishes: ecological significance and orientation mechanisms. In McCleave J. D., G. P. Arnold, J. J. Dodson, & W. H. Neill (eds), Mechanisms of Migration in Fishes. Plenum Press, New York: 293–308.Google Scholar
  38. Parrish, J. D. 1989. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine Ecology Progress Series 58: 143–160.Google Scholar
  39. Pinto, L. & N. N. Punchihewa, 1996. Utilisation of mangroves and seagrasses by fishes in the Negombo Estuary, Sri lanka. Marine Biology 126: 333–345.CrossRefGoogle Scholar
  40. Pittman, S. J. & C. A. McAlpine, 2003. Movements of marine fish and Decapod crustaceans: process, theory and application. Advances in Marine Biology 44: 205–294.PubMedCrossRefGoogle Scholar
  41. Robblee, M. B. & J. C. Zieman, 1984. Diel variation in the fish fauna of a tropical seagrass feeding ground. Bulletin of Marine Science 34: 335–345.Google Scholar
  42. Rooker, J. R. & G. D. Dennis, 1991. Diel, lunar and seasonal changes in a mangrove fish assemblage off southwestern Puerto Rico. Bulletin of Marine Science 49: 684–698.Google Scholar
  43. Samietz, J. & U. Berger, 1997. Evaluation of movement parameters in insects – bias and robustness with regard to resight numbers. Oecologia 110: 40–49.CrossRefGoogle Scholar
  44. Sheaves, M. & B. Molony, 2000. Short-circuit in the mangrove food chain. Marine Ecology Progress Series 199: 97–109.CrossRefGoogle Scholar
  45. Tulevech, S. M. & C. W. Recksiek, 1994. Acoustic tracking of adult white grunt, Haemulon plumieri, in Puerto Rico and Florida. Fisheries Research 19: 301–319.CrossRefGoogle Scholar
  46. Valdés-Muñoz, E. & A. D. Mochek, 2001. Behavior of marine fishes of the Cuban shelf. In Claro R., K. C. Lindeman, & L. R. Parenti (eds), Ecology of the Marine Fishes of Cuba. Washington and London: Smithsonian Institution Press: 58–72.Google Scholar
  47. Vance, D. J., M. D. E. Haywood, D. S. Heales, R. A. Kenyon, N. R. Loneragan & R. C. Pendrey, 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Marine Ecology Progress Series 131: 115–124.Google Scholar
  48. Verweij, M. C., I. Nagelkerken, D. de Graaff, M. Peeters, E. J. Bakker & G. van der Velde, 2006a. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306: 257–268.CrossRefGoogle Scholar
  49. Verweij, M. C., I. Nagelkerken, S. L. J. Wartenbergh, I. R. Pen & G. van der Velde, 2006b. Caribbean mangroves and seagrass beds as diurnal feeding habitats for juvenile French grunts, Haemulon flavolineatum. Marine Biology 149: 1291–1299.CrossRefGoogle Scholar
  50. Watson, M., J. L. Munro & F. R. Gell, 2002. Settlement, movement and early juvenile mortality of the yellowtail snapper Ocyurus chrysurus. Marine Ecology Progress Series 237: 247–256.CrossRefGoogle Scholar
  51. Zeller, D. C., 1997. Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Marine Ecology Progress Series 154: 65–77.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations