Hydrobiologia

, Volume 589, Issue 1, pp 249–263 | Cite as

From genetic structure to wetland conservation: a freshwater isopod Paramphisopus palustris (Phreatoicidea: Amphisopidae) from the Swan Coastal Plain, Western Australia

Primary Research Paper

Abstract

The freshwater isopod Paramphisopus palustris is ubiquitous and abundant in the groundwater-fed wetlands of the Swan Coastal Plain around Perth, Western Australia. Taxonomically, an additional variety (P. palustris fairbridgei) and species (P. montanus) are recognized from geographically outlying localities. Here a 486 bp fragment of cytochrome c oxidase subunit I (COI) mtDNA was sequenced in 68 individuals from 23 localities in order to evaluate the accepted taxonomy, to examine the evolutionary history of the species, and to identify lineages to prioritize conservation of wetlands already substantially modified. MtDNA showed individual populations to be largely distinct and differentiated. The 41 unique haplotypes formed seven independent, geographically defined networks. Phylogenetic analysis retrieved corresponding subclades, with three well-supported larger clades occurring (1) north of the Swan River, (2) south of the Swan River, and (3) in an area further south. A clear pattern of isolation by distance was detected suggesting an ancient serial founder event, with the pattern possibly persisting in the face of limited gene flow through priority effects. The possibility of incipient speciation, the monophyly of the recognized subspecies and the paraphyly of P. palustris with respect to P. montanus, suggest that the current taxonomy is invalid and requires re-examination. Divergences suggest a mid- to early Pliocene divergence of the major clades, with early Pliocene divergences among subclades probably driven by documented intense arid periods. Lineages are present in wetlands in geologically younger environments suggesting in situ survival and persistence. Seven Evolutionarily Significant Units were identified for the conservation of Paramphisopus, two of which are not currently represented in conservation reserves. With increased water demand and the negative impact of surrounding land-use, the current study provides a first phylogeographic assessment of conservation priorities for wetlands of the Swan Coastal Plain.

Keywords

COI mtDNA Dune systems Groundwater Isolation by distance Persistent founder event P. montanus P. palustris var. fairbridgei 

Supplementary material

References

  1. Akaike, H., 1974. A new look at the statistical model identification. Institute of Electrical and Electronics Engineers Transactions on Automatic Control 19: 716–723.CrossRefGoogle Scholar
  2. Arnold, J. M., 1990. Perth Wetlands Resource Book (Bulletin 266). Environmental Protection Authority and the Water Authority of Western Australia, Perth.Google Scholar
  3. Balla, S. A. & J. A. Davis, 1993. Wetlands of the Swan Coastal Plain, Vol. 5. Managing Perth’s wetlands to conserve the aquatic fauna. Water Authority of Western Australia, Leederville, Perth.Google Scholar
  4. Bastian, L. V., 1996. Residual soil mineralogy and dune subdivision, Swan Coastal Plain, Western Australia. Australian Journal of Earth Sciences 43: 31–44.CrossRefGoogle Scholar
  5. Cavalcanti, M. J., 2005. MANTEL for Windows. Test for association between two symmetrical distance matrices with permutation iterations. Version 1.18. Departemento de Vertebrados, Museu Nacional do Rio de Janiero, Brazil.Google Scholar
  6. Cheal, F., J. A. Davis & J. E. Growns, 1993. Relationships between macroinvertebates and environmental variables. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 16–18.Google Scholar
  7. Chessman, B. C., K. M. Trayler & J. A. Davis, 2002. Family- and species-level biotic indices for macroinvertebrates of wetlands on the Swan Coastal Plain, Western Australia. Marine and Freshwater Research 53: 919–930.CrossRefGoogle Scholar
  8. Churchill, D. M., 1959. Late Quaternary eustatic changes in the Swan River district. Journal of the Royal Society of Western Australia 41: 53–55.Google Scholar
  9. Clarke, J. D. A., 1994. Evolution of the Lefroy and Cowan Palaeodrainage channels, Western Australia. Australian Journal of Earth Sciences 41: 55–68.CrossRefGoogle Scholar
  10. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.PubMedCrossRefGoogle Scholar
  11. Davis, J. A., J. S. Bradley & J. E. Growns, 1993. General introduction. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 16–18.Google Scholar
  12. Davis, J. A. & R. S. Rosich, 1993a. Conclusions and implications for management. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 221–230.Google Scholar
  13. Davis, J. A. & R. S. Rosich, 1993b. Executive summary. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 7–15.Google Scholar
  14. De Gelas, K. & de Meester L., 2005. Phylogeography of Daphnia magna in Europe. Molecular Ecology 14: 753–764.PubMedCrossRefGoogle Scholar
  15. De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologia 23: 121–135.CrossRefGoogle Scholar
  16. Dodson, J. R. & M. K. Macphail, 2004. Palynological evidence for aridity events and vegetation changes during the Middle Pliocene, a warm period in Southwestern Australia. Global and Planetary Change 41: 285–307.CrossRefGoogle Scholar
  17. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.Google Scholar
  18. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  19. Excoffier, L., P. Smouse & J. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  20. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  21. Glauert, L., 1924. Contributions to the fauna of Western Australia, no. 4. A freshwater isopod Phreatoicus palustris. n. sp. Journal of the Royal Society of Western Australia 10: 49–57.Google Scholar
  22. Gómez, A., G. J. Adcock, D. H. Lunt & G. R. Carvalho, 2002. The interplay between colonization history and gene flow in passively dispersing zooplankton: microsatellite analysis of rotifer resting egg banks. Journal of Evolutionary Biology 15: 158–171.CrossRefGoogle Scholar
  23. Gouws, G., B. A. Stewart & S. R. Daniels, 2006. Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia. Marine and Freshwater Research 57: 837–848.CrossRefGoogle Scholar
  24. Gouws, G., B. A. Stewart & C. A. Matthee, 2005. Lack of taxonomic differentiation in an apparently widespread freshwater isopod morphotype (Phreatoicidea: Mesamphisopidae: Mesamphisopus) from South Africa. Molecular Phylogenetics and Evolution 37: 289–305.PubMedCrossRefGoogle Scholar
  25. Growns, J. E., J. A. Davis, F. Cheal & J. S. Bradley, 1993a. Classification of the wetlands using invertebrate data. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 88–156.Google Scholar
  26. Growns, J. E., L. G. Schmidt & F. Cheal, 1993b. Site descriptions and general methods. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 19–28.Google Scholar
  27. Hasegawa, M., K. Kishino & T. Yano, 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.PubMedCrossRefGoogle Scholar
  28. Hopper, S. D. & P. Gioia, 2004. The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution and Systematics 35: 623–650.CrossRefGoogle Scholar
  29. Jarman, S. N., 2004. Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20: 1644–1645.PubMedCrossRefGoogle Scholar
  30. Keable, S. J. & G. D. F. Wilson, 2006. New species of Pygolabis Wilson, 2003 (Isopoda, Tainisopidae, Crustacea) from Western Australia. Zootaxa 1116: 1–27.Google Scholar
  31. Ketmaier, V., R. Argano & A. Caccone, 2003. Phylogeography and molecular rates of subterranean aquatic stenasellid isopods with a peri-Tyrrhenian distribution. Molecular Ecology 12: 547–555.PubMedCrossRefGoogle Scholar
  32. Kimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78: 454–458.PubMedCrossRefGoogle Scholar
  33. Knott, B. & S. A. Halse, 1999. Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidea: Amphisopididae) from the Pilbara region of Western Australia. Records of the Australian Museum 51: 33–42.Google Scholar
  34. Majer, K., 1979a. Wetlands of the Darling System: wetland reserves and their management. Bulletin No. 62. Department of Conservation and Environment, Lesmurdie, Western Australia.Google Scholar
  35. Majer, K., 1979b. Wetlands of the Darling System: wetlands in conservation reserves and national parks. Bulletin No. 61. Department of Conservation and Environment, Lesmurdie, Western Australia.Google Scholar
  36. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220.PubMedGoogle Scholar
  37. McGaughran, A., I. D. Hogg, M. I. Stevens, W. L. Chadderton & M. J. Winterbourn, 2006. Genetic divergence of three freshwater isopod species from southern New Zealand. Journal of Biogeography 33: 23–30.CrossRefGoogle Scholar
  38. Mitchell, D., K. Williams & A. Desmond, 2003. Swan Coastal Plain 2 (SWA2—Swan Coastal Plain subregion). In May, J. A. & N. L. McKenzie (eds), A Biodiversity Audit of Western Australia’s 53 Biogeographical Subregions in 2002. Department of Conservation and Land Management, Kensington, Perth, 606–623.Google Scholar
  39. Moritz, C., 1995. Uses of molecular phylogenies for conservation. Philosophical Transactions of the Royal Society of London B 349: 113–118.CrossRefGoogle Scholar
  40. Moritz, C., 1999. Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130: 217–228.CrossRefGoogle Scholar
  41. Nicholls, G. E., 1924. Phreatoicus lintoni, a new species of freshwater isopod from south-western Australia. Journal of the Royal Society of Western Australia 10: 92–103.Google Scholar
  42. Nicholls, G. E., 1926. A description of two new genera and species of Phreatoicidea, with a discussion of the affinities of the members of this family. Journal of the Royal Society of Western Australia 12: 179–210.Google Scholar
  43. Nicholls, G. E., 1943. The Phreatoicoidea. Part I. The Amphisopidae. Papers and Proceedings of the Royal Society of Tasmania 1942: 1–145.Google Scholar
  44. Nicholls, G. E. & D. F. Milner, 1923. A new genus of fresh-water Isopoda, allied to Phreatoicus. Journal of the Royal Society of Western Australia 10: 23–34.Google Scholar
  45. Posada, D., 2004. Collapse: describing haplotypes from sequence alignments. Version 1.2. (http://darwin.uvigo.es).Google Scholar
  46. Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  47. Ramachandran, S., O. Deshpande, C. C. Roseman, N. A. Rosenberg, M. W. Feldman & L. L. Cavalli-Sforza, 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences of the United States of America 102: 15942–15947.PubMedCrossRefGoogle Scholar
  48. Rivera, M. A. J., F. G. Howart, S. Taiti & G. K. Roderick, 2002. Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Molecular Phylogenetics and Evolution 25: 1–9.PubMedCrossRefGoogle Scholar
  49. Schmidt, L. G., J. E. Growns & F. Cheal, 1993. Other factors of environmental significance. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 214–220.Google Scholar
  50. Schmidt, L. G. & R. S. Rosich, 1993. Phytoplankton community structure in relation to physical and chemical gradients. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 157–170.Google Scholar
  51. Semeniuk, V., 1997. Pleistocene coastal palaeogeography in southwestern Australia—carbonate and quartz sand sedimentation in cuspate forelands, barriers and ribbon shoreline deposits. Journal of Coastal Research 13: 468–489.Google Scholar
  52. Sheppard, E. M., 1927. Revision of the family Phreatoicidae (Crustacea), with a description of two new species. Proceedings of the Zoological Society of London 1927: 81–124.Google Scholar
  53. Swofford, D. L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates Inc., Sunderland, Massachusetts.Google Scholar
  54. Tamura, K., 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C content biases. Molecular Biology and Evolution 9: 678–687.PubMedGoogle Scholar
  55. Templeton, A. R., E. Routman & C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782.PubMedGoogle Scholar
  56. Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089.CrossRefGoogle Scholar
  57. Verovnik, R., B. Sket & P. Trontelj, 2004. Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda). Molecular Ecology 13: 1519–1532.PubMedCrossRefGoogle Scholar
  58. Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513.PubMedGoogle Scholar
  59. Wang, M. & A. Schreiber, 1999a. Population differentiation in the woodlouse Oniscus asellus in central Europe (Isopoda: Oniscoidea). Journal of Crustacean Biology 19: 301–312.CrossRefGoogle Scholar
  60. Wang, M. & A. Schreiber, 1999b. Population genetics of the woodlouse Porcellio scaber Latr. (Isopoda: Oniscoidea) in central Europe: passive dispersal and postglacial range expansion. Canadian Journal of Zoology 77: 1337–1347.CrossRefGoogle Scholar
  61. Wilson, G. D. F. & G. D. Edgecombe, 2003. The Triassic isopod Protamphisopus wianamattensis (Chilton) and comparison with extant taxa (Crustacea, Phreatoicidea). Journal of Paleontology 77: 454–470.CrossRefGoogle Scholar
  62. Wilson, G. D. F. & E. L. Ho, 1996. Crenoicus Nicholls, 1944 (Crustacea, Isopoda, Phreatoicidea): systematics and biology of a new species from New South Wales. Records of the Australian Museum 48: 7–32.Google Scholar
  63. Wilson, G. D. F. & S. J. Keable, 1999. A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia. Zoological Journal of the Linnean Society 126: 51–79.CrossRefGoogle Scholar
  64. Wilson, G. D. F. & S. J. Keable, 2002. New genera of Phreatoicidea (Crustacea: Isopoda) from Western Australia. Records of the Australian Museum 54: 41–70.Google Scholar
  65. Wright, S., 1943. Isolation by distance. Genetics 28: 114–138.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Animal BiologyThe University of Western AustraliaCrawleyAustralia
  2. 2.Centre of Excellence in Natural Resource ManagementThe University of Western AustraliaAlbanyAustralia

Personalised recommendations