Advertisement

Hydrobiologia

, Volume 589, Issue 1, pp 165–173 | Cite as

Evaluation of the Trophic Diatom Index for assessing water quality in River Gharasou, western Iran

  • Islam AtazadehEmail author
  • Mozafar Sharifi
  • M. G. Kelly
Primary Research Paper

Abstract

Water quality, diatom species composition and biomass estimates were performed in the Gharasou River in western Iran. Five sites along the River Gharasou were sampled every month from April to September 2005. Physical and chemical factors (pH, NO3–N, PO4–P, dissolved oxygen, total suspend solids, total dissolved solids, conductivity, turbidity, chemical oxygen demand and biological oxygen demand) were measured along with biological properties of the periphyton including biomass, ash-free dry mass, chlorophyll-a concentration and the taxonomic composition diatom assemblages. Information from the diatom assemblage was used to calculate the Trophic Diatom Index and biovolume. The TDI was significantly correlated with measures of human disturbance at the sites (e.g. PO4–P, NO3–N and dissolved oxygen) as well as to biomass measures (chlorophyll a, ash-free dry mass and biovolume). The sensitivity of the TDI and its component metrics to environmental stressors supports the use of this index for monitoring ecological conditions in streams in Iran and to aid diagnosis of the cause of their impairment.

Keywords

Algae Periphyton Indicator Water Quality TDI Rivers Iran 

Notes

Acknowledgements

Thanks to Dr Lydia King (University of Lancaster, UK) and Dr Ingrid Jüttner (National Museum of Wales, UK) for constructive reviews of earlier drafts of this paper and to Kermanshah Department of Environment for provision of data on BOD and COD from the study sites.

References

  1. American Public Health Associations, 1992. Standard Methods for the Examination of Water and Wastewater, 18th edn. APHA, Washington, D.C., USA.Google Scholar
  2. Bate, G., P. Smailes & J. Adams, 2004. A water quality index for use with diatoms in the assessment of rivers. Water SA 30: 493–498.Google Scholar
  3. Chessman, B., I. Growns, J. Currey & N. Plunkett-Cole, 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Biology 41: 317–331.CrossRefGoogle Scholar
  4. Coring, E., S. Schneider, A. Hamm & G. Hofmann, 1999. Durchgehendes Trophiesystem auf der Grundlage der Trophieindikaation mit Kieselalgen. Deutscher Verband für Wasserwirtschaft und Kulturbau e.V., Koblenz, 219 pp.Google Scholar
  5. Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Environmental Science and Technology 26: 23–33.CrossRefGoogle Scholar
  6. Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristies of African lakes. Paleogeography Palaeoclimatalogy Palaeoecology. 117: 31–54.CrossRefGoogle Scholar
  7. Gerritson, J., 1995. Additive biological indices for resource management. Journal of the North American Benthological Society 14: 451–457.CrossRefGoogle Scholar
  8. Hill, B. H., A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, F. H. McCormick & C. J. Burch, 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19: 50–67.CrossRefGoogle Scholar
  9. Hill, B. H., A. T. Herlihy, P. R. Kaufmann, S. J. De Celles & M. A. Vander Borgh, 2003. Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecological Indicators 2: 325–338.CrossRefGoogle Scholar
  10. Hill, W. R. & A. W. Knight, 1987. Experimental analysis of the grazing interaction between a mayfly and stream algae. Ecology 68: 955–1985.CrossRefGoogle Scholar
  11. Hughes, R. M., T. R. Whittier, C. M. Rohm & D. R. Larsen, 1991. A regional framework for establishing recovery criteria. Environmental Management 14: 673–683.CrossRefGoogle Scholar
  12. John, J., 1998. Diatoms: Tools for Bioassessment of River health. A Model for South-Western Australia. Water and Rivers Com. Perth, 388 pp.Google Scholar
  13. Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.CrossRefGoogle Scholar
  14. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. B. Ector & Goldsmith et al. 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology. 10: 215–224.CrossRefGoogle Scholar
  15. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–333.CrossRefGoogle Scholar
  16. Kelly, M. G. & B. A. Whitton, 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia. 384: 55–67.CrossRefGoogle Scholar
  17. Kelly, M. G., C. Adams, A. C. Graves, J. Jamieson, J. Krokowski, E. B. Lycett, J. B. Murray, S. Pritchard & C. Wilkins, 2001. The Trophic Diatom Index: A User’s Manual. Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, BRISTOL, BS32 4UD.Google Scholar
  18. Kerans, B. L. & J. R. Karr, 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee valley. Ecological Applications 4: 768–785.CrossRefGoogle Scholar
  19. King, L., G. Clarke, H. Bennion, M. G. Kelly & M. L. Yallop, 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18: 15–25.CrossRefGoogle Scholar
  20. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. Suesswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.Google Scholar
  21. Lenoir, A. & M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the French National Water Board Network. In Whitton, B. A. & E. Rott (eds), Use of algae for monitoring rivers ПП. Inst. Bot. Univ. Innsbruck, 9–43.Google Scholar
  22. Litteral, R. L., R. W. Phillsbury & R. L. Low, 1995. The response of the benthic algal community of saginaw bay, near the charity islands, to changes in light penetration. Proceeding of the Fish International Zebra Mussel and other Aquatic Nuisance Organisms Conference, Toronto, Canada, 275–383.Google Scholar
  23. Lowe, R. L. & Y. Pan, 1996. Benthic algal communities as biological indicators. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego, 705–739.Google Scholar
  24. Margalef, R., 1968. Perspectives in Ecological Theory. University of Chicago Press, Chicago, 112 pp.Google Scholar
  25. McCarron, E. & R. Frydenborg, 1997. The Florida bioassessment program: an agent for change. Human Ecological Risk Assessment. 3: 967–977.Google Scholar
  26. Norris, R. H. & K. H. Norris, 1995. The need for biological assessment of water quality: Australian perspective. Australian Journal of Ecology 20: 1–6.CrossRefGoogle Scholar
  27. Nusch, E. A., 1980. Comparison of different methods for chlorophyll and pheopigment determination. Archiv für Hydrobiologie, Beifeft Ergebnise der limnologie 14: 14–36.Google Scholar
  28. OECD, 1982. Eutrophication of Waters Monitoring Assessment and Control. Organisation for Economic Cooperation and Development, Paris.Google Scholar
  29. Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecolocical determinants of benthic algal assemblages in mid-atlantic streams, USA. Journal of Phycology 35: 460–446.CrossRefGoogle Scholar
  30. Pentecost, A, 1984. Introduction to freshwater algae. Richmond Publishing Co. Ltd. England.Google Scholar
  31. Prygiel, J. & M. Coste, 1999. Progress in the use of diatoms for monitoring rivers in France. In Prygiel, J., B. A. Whitton & J. Bukowska (eds), Use of Algae for monitoring Rivers III. Agence de l’Eau Artois-Picardie, Douai, 165–179.Google Scholar
  32. Resh, V. H. & J. K. Jackson, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and using. Chapman and Hal, New York, 195–233.Google Scholar
  33. Rott, E., E. Pipp, P. Pfister, H. van Dam, K. Ortler, N. Binder & K. Pall, 1999. Indikationslisten für Aufwuchsalgen in Osterreichischen Fliessgewassern. Teil 2: Trophieindikation. Bundesministerium fuer Land-und Forstwirtschaft, Wien, Austria, 248 pp.Google Scholar
  34. Shannon, C. E. & W. Weaver, 1949. The Mathematical theory of communications. University of Illionis Press, Urbana, 117 pp.Google Scholar
  35. Sharifi, M., 1990. Assessment of surface water quality by an index ststem in Anzali basin. The Hydrological Basis for Water Resources Mangement (Proceeding of the Beijing Symposium). IAHS publication. 197: 163–171.Google Scholar
  36. Sharifi, M. & A. Zorofi, 2001. Whole effluent toxicity test in River Gharasou, Iran. 9th International Congress of Toxicology, Brisbane, Australia.Google Scholar
  37. Simpson, E. H. 1949. Measurement of diversity. Nature, 163–188.Google Scholar
  38. Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Science. Cambridge University Press, Cambridge, 11–40.Google Scholar
  39. Suter, G. W., 1993. A critique of ecosystem health concepts and indices. Environmental Toxicology and Chemistry 12: 1533–1539.CrossRefGoogle Scholar
  40. Tiffany, L. H. & M. E. Britton, 1971. The algae of Illinois. Hafner Publishing Company, New York.Google Scholar
  41. Whitton, B. A. & M. G. Kelly, 1995. Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20: 45–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Islam Atazadeh
    • 1
    Email author
  • Mozafar Sharifi
    • 1
    • 2
  • M. G. Kelly
    • 3
  1. 1.Department of Biology, Faculty of ScienceRazi UniversityKermanshahIran
  2. 2.Razi University Center for Environmental StudiesKermanshahIran
  3. 3.Bowburn ConsultancyBowburnUK

Personalised recommendations