Advertisement

Hydrobiologia

, Volume 586, Issue 1, pp 331–342 | Cite as

Intertidal meiofaunal biodiversity with respect to different algal habitats: a test using phytal ostracodes from Southern California

  • Kristin Frame
  • Gene HuntEmail author
  • Kaustuv Roy
Primary Research Paper

Abstract

Rocky intertidal algae harbor a diverse invertebrate meiofauna of arthropods, nematodes and other invertebrates. Despite its ecological importance, relatively little is known about the diversity and composition of this important component of intertidal biodiversity. In this study, we quantified species composition, abundance and distribution of ostracodes, an important group of phytal meiofauna, at two different intertidal areas in southern California. In total, we recovered 22 ostracode species from three different orders (16 podocopids, five myodocopids and one platycopid), nearly a quarter of which could not be assigned to existing taxa. The abundance of ostracodes differed significantly among algal types, with structurally complex algae bearing many more ostracodes per gram of algae than simple forms (blade-like algae and the surfgrass Phyllospadix). Although most ostracode species were recovered from multiple kinds of algae, different algae harbored distinct assemblages that could be discriminated statistically on the basis of relative abundances of ostracode species. This segregation of the ostracode fauna according to algal species is evident even over very short spatial scales (<1 m). Finally, ostracode samples from turf-forming algae were more species rich than samples from other kinds of macroalgae. Since turf-forming algae are easily damaged by human trampling, this component of ostracode biodiversity may be particularly vulnerable to anthropogenic impacts on the intertidal habitat.

Keywords

Ostracoda Intertidal algae Abundance Diversity 

Notes

Acknowledgements

We thank D. Horne and an anonymous reviewer for careful and constructive comments on the manuscript, and B. Pister for advice on field collection and algae identification. A. Cohen and D. Horne generously helped us to sort out aspects of ostracode taxonomy and sbiology.

Supplementary material

References

  1. Abbott, I. A. & G. J. Hollenberg, 1976. Marine Algae of California. Stanford University Press, Stanford, 827 pp.Google Scholar
  2. Addessi, L., 1994. Human disturbance and long-term changes on a rocky intertidal community. Ecological Applications 4: 786–797.CrossRefGoogle Scholar
  3. Athersuch, J., 1979. The ecology and distribution of the littoral ostracods of Cyprus. Journal of Natural History 13: 135–160.CrossRefGoogle Scholar
  4. Athersuch, J., D. J. Horne & J. E. Whittaker, 1989. Marine and Brackish Water Ostracods. The Bath Press, Avon, 343 pp.Google Scholar
  5. Benson, R. H., 1959. Ecology of Recent ostracodes of the Todos Santos Bay regions, Baja California, Mexico. University of Kansas Paleontological Contributions Monograph 1: 1–80.Google Scholar
  6. Benson, R. H. & R. L. Kaesler, 1963. Recent marine and lagoonal ostracodes from the Estero de Tastiota region, Sonora, Mexico (Northeastern Gulf of California). University of Kansas Paleontological Contributions Monograph 3: 1–34.Google Scholar
  7. Brosnan, D. M. & L. L. Crumrine, 1994. Effects of human trampling on marine rocky shore communities. Journal of Experimental Marine Biology and Ecology 177: 79–97.CrossRefGoogle Scholar
  8. Brouwers, E. M., 1990. Systematic paleontology of Quaternary ostracode assemblages from the Gulf of Alaska. Part 1. Families Cytherellidae, Bairdiidae, Cytheridae, Leptocytheridae, Limnocytheridae, Eucytheridae,Krithidae, Cushmanideidae. United States Geological Survey Professional Paper P1510: 1–43.Google Scholar
  9. Brouwers, E. M., 1993. Systematic paleontology of Quaternary ostracode assemblages from the Gulf of Alaska. Part 2. Families Trachyleberididae, Hemicytheridae, Loxoconchidae, Paracytherideidae. United States Geological Survey Professional Paper P1531: 1–47.Google Scholar
  10. Brouwers, E. M., 1994. Systematic paleontology of Quaternary ostracode assemblages from the Gulf of Alaska. Part 3. Family Cytheruridae. United States Geological Survey Professional Paper P1544: 1–45.Google Scholar
  11. Brown, P. J. & R. B. Taylor, 1999. Effects of trampling by humans on animals inhabiting coralline algal turf in the rocky intertidal. Journal of Experimental Marine Biology and Ecology 235: 45–53.CrossRefGoogle Scholar
  12. Caramujo, M.-J., E. Van der Grinten & W. Admiraal, 2005. Trophic interactions between benthic copepods and algal assemblages: a laboratory study. Journal of the North American Benthological Society 24: 890–903.CrossRefGoogle Scholar
  13. Clarke, K. R. & H. Green, 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46: 213–226.Google Scholar
  14. Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64: 1599–1609.CrossRefGoogle Scholar
  15. Crouch, R. W., 1949. Pliocene Ostracoda from southern California. Journal of Paleontology 23: 594–599.Google Scholar
  16. Elofson, O., 1941. Zur Kenntnis der marinen Ostracoden Schwedems mit Besonderer Berucksichtigung des Skageraks. Zoologiska Bidrag fran Uppsala 19: 215–534.Google Scholar
  17. Gee, J. M., 1989. An ecological and economic review of meiofauna as food for fish. Zoological Journal of the Linnean Society 96: 243–261.Google Scholar
  18. Gerlach, S. A., 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33: 55–69.CrossRefGoogle Scholar
  19. Gotelli, N. J. & G. L. Entsminger, 2006. EcoSim: Null models software for ecology. Acquired Intelligence Inc. & Kesey-Bear, v. 7.Google Scholar
  20. Hagerman, L., 1966. The macro- and microfauna associated with Fucus serratus L., with some ecological remarks. Ophelia 3: 1–43.Google Scholar
  21. Hagerman, L., 1968. The ostracod fauna of Corallina officinalis L. in western Norway. Sarsia 36: 49–54.Google Scholar
  22. Hartmann, V. G., 1959. Zur Kenntnis der lotischen Lebenbereiche der pazifischen Küste von El Salvador unter besonderer Berücksichtigung seiner Ostracodenfauna. Kieler Meeresforsch 15: 187–241.Google Scholar
  23. Hicks, G. R. F., 1986. Meiofauna associated with rocky shore algae. In Moore, P. G. & R. Seed (eds), The Ecology of Rocky Coasts. Columbia University Press, New York, 36–56.Google Scholar
  24. Horne, D. J., 1982. The vertical distribution of phytal ostracodes in the intertidal zone at Gore Point, Bristol Channel, U.K. Journal of Micropalaeontology 1: 71–84.CrossRefGoogle Scholar
  25. Horne, D. J., 2003. Key events in the ecological radiation of the Ostracoda. In Park, L. E. & A. J. Smith (eds), Bridging the Gap: Trends in the Ostracode Biological and Geological Sciences. Yale University Reprographics and Imaging Services, New Haven, 181–201.Google Scholar
  26. Horne, D. J. & J. E. Whittaker, 1985. A revision of the genus Paradoxostoma Fischer (Crustacea; Ostracoda) in British waters. Zoological Journal of the Linnean Society 85: 131–203.Google Scholar
  27. Horne, D. J., A. Cohen & K. Martens, 2002. Taxonomy, morphology and biology of quaternary and living Ostracoda. In Holmes, J. A. & A. R. Chivas (eds), The Ostracoda. Applications in Quaternary Research. American Geophysical Union, Washington, DC.Google Scholar
  28. Hull, S. L., 1997. Seasonal changes in diversity and abundance of ostracods on four species of intertidal algae with differing structural complexity. Marine Ecology Progress Series 161: 71–82.Google Scholar
  29. Hull, S. L., 1998. The distribution and assemblage composition of the ostracod fauna (Crustacea: Ostracoda) on Filey Brigg, North Yorkshire. Journal of Natural History 32: 501–520.Google Scholar
  30. Hull, S. L., 1999a. Comparison of tidepool phytal ostracod abundance and assemblage structure on three spatial scales. Marine Ecology Progress Series 182: 201–208.Google Scholar
  31. Hull, S. L., 1999b. Intertidal ostracod (Crustacea: Ostracoda) abundance and assemblage structure within and between four shores in north-east England. Journal of the Marine Biological Association of the United Kingdom 79: 1045–1052.CrossRefGoogle Scholar
  32. Kamiya, T., 1988. Morphological and ethological adaptations of Ostracoda to microhabitats in Zostera beds. In Hanai, T., N. Ikeya & K. Ishizaki (eds), Evolutionary Biology of Ostracoda. Elsevier, Kodansha, Japan, 303–318.Google Scholar
  33. Keough, M. J. & G. P. Quinn, 1998. Effects of periodic disturbances from trampling on rocky intertidal algal beds. Ecological Applications 8: 141–161.CrossRefGoogle Scholar
  34. Kornicker, L. S. & B. Myers, 1981. Rutidermatidae of southern California (Ostracoda: Myocopina). Smithsonian Contributions to Zoology 334: 1–35.Google Scholar
  35. Le Roy, L. W., 1943. Pleistocene and Pliocene Ostracoda of the coastal region of southern California. Journal of Paleontology 17: 354–373.Google Scholar
  36. Legendre, L. & P. Legendre, 1983. Numerical Ecology. Elsevier Scientific Publishing, Amsterdam, 419 pp.Google Scholar
  37. Maddocks, R. F., 1969. Revision of recent Bairdiidae (Ostracoda). United States National Museum Bulletin 295: 1–126.Google Scholar
  38. Maddocks, R. F., 1990. Living and fossil Macrocyprididae (Ostracoda). University of Kansas Paleontological Contributions Monograph 2: 1–285.Google Scholar
  39. Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford, 256 pp.Google Scholar
  40. McKenzie, K. G., 1965. Myodocopid Ostracoda (Cyprinacea) from Scammon Lagoon, Baja California, Mexico, and their ecologic associations. Crustaceana 9: 5–70.CrossRefGoogle Scholar
  41. McKenzie, K. G. & F. M. Swain, 1967. Recent Ostracoda from Scammon Lagoon, Baja California. Journal of Paleontology 41: 281–305.Google Scholar
  42. Moore, C. G. & B. J. Bett, 1989. The use of meiofauna in marine pollution impact assessment. Zoological Journal of the Linnean Society 96: 263–280.CrossRefGoogle Scholar
  43. Nohara, T. & R. Tabuki, 1990. Seasonal distribution of Ostracoda on two species of marine plants and two holothurians in Okinawa, Japan. In Whatley, R. & C. Maybury (eds), Ostracoda and Global Events. Chapman & Hall, London, 355–363.Google Scholar
  44. Oksanen, J., R. Kindt & B. O’Hara, 2005. Vegan: community ecology package. v. 1.6–10.Google Scholar
  45. Poulsen, E. M., 1965. Ostracoda-Myodocopa, 2: Cypridiniformes-Rutidermatidae, Sarsiellidae and Asteropidae. Dana Report 65: 1–484.Google Scholar
  46. R Development Core Team, 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, v. 2.1.1.Google Scholar
  47. Roy, K., A. G. Collins, B. J. Becker, E. Begovic & J. M. Engle, 2003. Antropogenic impacts and historical decline in body size of rocky intertidal gastropods in southern California. Ecology Letters 6: 205–211.CrossRefGoogle Scholar
  48. Ruiz, F., M. Abad, A. M. Bodergat, P. Carbonel, J. Rodriguez-Lazaro & M. Yasuhara, 2005. Marine and brackish-water ostracods as sentinels of anthropogenic impacts. Earth-Science Reviews 72: 89–111.CrossRefGoogle Scholar
  49. Sanders, H. L., 1968. Marine benthic diversity: a comparative study. American Naturalist 102: 243–282.CrossRefGoogle Scholar
  50. Skogsberg, T., 1928. Studies on marine ostracods. Part II. External morphology of the genus Cythereis, with descriptions of twenty-one new species. California Academy of Science, Occasional Papers 15.Google Scholar
  51. Skogsberg, T., 1950. Two new species of marine Ostracoda (Podocopa) from California. Proceedings of the California Academy of Sciences 26: 483–505.Google Scholar
  52. Smith, V. Z., 1952. Further Ostracoda of the Vancouver Island region. Journal of the Fisheries Research Board of Canada 9: 16–41.Google Scholar
  53. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W.H. Freeman & Company, New York, 887 pp.Google Scholar
  54. Swain, F. M., 1967. Ostracoda from the Gulf of California. Geological Society of America Memoir 101: 1–139.Google Scholar
  55. Swain, F. M., 1969. Taxonomy and ecology of near-shore Ostracoda from the Pacific coast of North and Central America. In Neale, J. W. (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver & Boyd, Edinburgh, 423–474.Google Scholar
  56. Swain, F. M. & J. M. Gilby, 1967. Recent Ostracoda from Corinto Bay, western Nicaragua, and their relationship to some other assemblages of the Pacific Coast. Journal of Paleontology 41: 306–334.Google Scholar
  57. Swain, F. M. & J. M. Gilby, 1974. Marine Holocene Ostracoda from the Pacific coast of North and Central America. Micropaleontology 20: 257–353.CrossRefGoogle Scholar
  58. Valentine, P. C., 1976. Zoogeography of Holocene Ostracoda off western North America and paleoclimatic implications. United States Geological Survey Professional Paper 916: 1–47.Google Scholar
  59. Watzin, M. C., 1983. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia 59: 163–166.CrossRefGoogle Scholar
  60. Whatley, R. C. & D. R. Wall, 1975. The relationship between Ostracoda and algae in littoral and sublittoral marine environments. Bulletin of the American Paleontological Society 65: 173–203.Google Scholar
  61. Williams, R., 1969. Ecology of the Ostracoda from selected marine intertidal localities on the coast of Anglesey. In Neale, J. W. (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver & Boyd, Edinburgh, 299–329.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Section of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Paleobiology, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations