Hydrobiologia

, Volume 586, Issue 1, pp 321–329

Microsatellite diversity and population genetic structure of redfin culter (Culter erythropterus) in fragmented lakes of the Yangtze River

Primary Research Paper

Abstract

Redfin culter (Culter erythropterus) is a small lethic freshwater fish and widely distributed in the adjacent lakes of the Yangtze River of China. Five microsatellite loci were applied to investigate the genetic variation and population structure of redfin culter from seven lakes in the middle-and-lower reaches of the Yangtze River. The gene diversity was high among the populations (H > 0.9), the average number of alleles among seven populations was low with a range from 2.00 to 3.87. The mean observed (HO) and expected (HE) heterozygosity ranged from 0.111 to 0.419 and from 0.162 to 0.750, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found in 50% of the total locus-population combination tests in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percentage of variance among and within these populations were 6.18 and 93.82, respectively. The Fst values (0.062, P < 0.001) among studied populations indicated that there were significant genetic differentiations among redfin culture populations from the scattered lakes with different connections to the Yangtze River. These results are useful for the evaluation and conservation of small freshwater fishes. The factors that may be involved in low intra-population polymorphism and the pattern of the population genetic structure of redfin culter from the Yangtze River were discussed.

Keywords

Genetic diversity Habitat fragmentation Microsatellites Population structure Redfin culter (Culter erythropterus

Supplementary material

10750_2007_0702_ESM.pdf (109 kb)
ESM (PDF 109 kb)

References

  1. Angel, P., G. Mercedes, L. Philippe, M. Concepcion & A. Jose, 2006. Effects of fishing protection on the genetic structure of fish populations. Biological Conservation 129: 244–255.CrossRefGoogle Scholar
  2. Avise, J. C., J. Arnold & R. M. Ball, 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Reviews in Ecology and Systematics 18: 489–522.Google Scholar
  3. Belkhir, K. & F. Bonhomme, 2002. PartitionML: a maximum likelihood estimation of the best partition of a sample into panmictic units. Université de Montpellier, Montpellier, France.Google Scholar
  4. Bergh, M. O. & W. M. Getz, 1989. Stability and harvesting of competing populations with genetic variation in life history strategy. Genetics 113: 939–965.Google Scholar
  5. Brookfield, J. F. Y., 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5: 453–455.PubMedCrossRefGoogle Scholar
  6. Cao, W. X., G. H. Zhang, J. Ma & D. H. Yu, 1999. A preliminary discussion on fish resource miniaturization in Lake Honghu. In Liang, Y. L. & H. Q. Liu (eds), China Ocean Press, Beijing, 148–152.Google Scholar
  7. Castricl, V., L. Bernatchez, K. Belkhir & F. Bonhomme, 2002. Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89: 27–35.CrossRefGoogle Scholar
  8. Chen, Y. Y., 1998. Fauna sinica Osteichthyes: Cypriniformes (II). Science Press, Beijing: 182–183.Google Scholar
  9. Crooijmans, R. P. M. A., J. J. V. Poel, M. A. M. Groenen, V. A. F. Bierbooms & J. Komen, 1997. Microsatellite markers in common carp (Cyprinus carpio L.). Animal Genetics 28: 129–134.CrossRefGoogle Scholar
  10. Cunningham, M. & C. Moritz, 1998. Genetic effects of forest fragmentation on a rainforest restricted lizard (Scincidae: Gnypetoscincus queenslandiae). Biological Conservation 83: 19–30.CrossRefGoogle Scholar
  11. David, L., P. Rajasekaran, J. Fang, J. Hillel & U. Lavi, 2001. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers. Molecular Genetics and Genomics 266: 353–362.PubMedCrossRefGoogle Scholar
  12. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  13. Galeuchet, D. J., C. Perret & M. Fishcher, 2005. Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. Molecular Ecology 14: 991–1000.PubMedCrossRefGoogle Scholar
  14. Goudet, J., 1995. Fstat (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485–486.Google Scholar
  15. Hillis, D. M., B. K. Mable, A. Larson, S. K. Davis & E. A. Zimmer, 1996. Nucleic Acids IV: sequencing and cloning. In: Molecular Systematics. Sinauer Associates, Sunderland, USA.Google Scholar
  16. Jarne, P. & P. J. L. Lagoda, 1996. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution 11: 424–429.CrossRefGoogle Scholar
  17. Jin, G., 1999. State of submersed vegetation resources in Lake Liangzi, Lake Niushan and Lake Baoan. Acta Hydrobiologia Sinica 23: 87–89.Google Scholar
  18. Keller, I. & C. R. Largiader, 2003. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proceedings of the Royal Society B: Biological Sciences 270: 417–423.PubMedCrossRefGoogle Scholar
  19. Keller, L. F., K. J. Jeffrey, P. Arcese, M. A. Beaumont, W. M. Hochachka, J. M. N. Smith & M. W. Bruford, 2001. Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society B: Biological Sciences 268: 1387–1394.PubMedCrossRefGoogle Scholar
  20. Keyghobadi, N. U. S. H., J. E. N. S. Roland & C. U. R. T. Strobeck, 2005. Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Molecular Ecology 14: 1897–1909.PubMedCrossRefGoogle Scholar
  21. Kumar, S., K. Tamura & M. Nei, 2004. MEGA 3: integrated software for molecular evolutionary genetics analysis and aequence alignment. Briefings in Bioinformatics 5: 150–163.PubMedCrossRefGoogle Scholar
  22. Lande, R., 1999. Extinction risks from anthropogenic, ecological, and genetic factors. In Landweber, L. A. & A. P. Dobson (eds), Genetics and Extinction of Species. Princeton University Press, Princeton, NJ, 1–22.Google Scholar
  23. Liao, X. L., X. M. Yu, D.Q. Tan & J. Tong, 2005. Microsatellite diversity of grass carp in the Yangtze River system. Acta Hydrobiologia Sinica 29: 113–119.Google Scholar
  24. Liao, X. L., X. M. Yu & J. Tong, 2006. Genetic diversity of common carp from two largest Chinese lakes and the Yangtze River revealed by microsatellite markers. Hydrobiologia 568: 445–453.CrossRefGoogle Scholar
  25. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY, USA.Google Scholar
  26. Raymond, M. & F. Rousset, 1995. An exact test for population differentiation. Evolution 49: 1280–1283.CrossRefGoogle Scholar
  27. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  28. Schneider, S., D. Roessli & L. Excoffier 2000. ARLEQUIN, Version 2.0, a software for population genetics data analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland.Google Scholar
  29. Slatkin, M., 1994. Gene flow and population structure. In Real, L. A. (eds), Ecological Genetics. Princeton University Press, Princeton, NJ, 3–17.Google Scholar
  30. Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.PubMedGoogle Scholar
  31. Sumner, J., T. Jessop, D. Paetkau & C. Moritz, 2004. Limited effect of anthropogenic habitat fragmentation on molecular diversity in a rain forest skink, Gnypetoscincus queenslandiae. Molecular Ecology 13: 259–269.PubMedCrossRefGoogle Scholar
  32. Tallmon, D. A., H. M. Draheim, L. S. Mills & F. W. Allendorf, 2002. Insights into recently fragmented vole populations from combined genetic and demographic data. Molecular Ecology 11: 699–709.PubMedCrossRefGoogle Scholar
  33. Tong, J., Z. Wang, X. Yu, Q. Wu & K. H. Chu, 2002. Cross-species amplification in silver carp and bighead carp with microsatellite primers of common carp. Molecular Ecology Notes 2: 245–247.CrossRefGoogle Scholar
  34. Wang Z. W., Q. J. Wu, J. F. Zhou, Y. Z. Ye & J. Tong, 2003. Silver carp, Hypophthalmichthys molitrix, in the Poyang Lake belong to the Ganjiang River population rather than the Changjiang River population. Environmental Biology of Fishes 68: 261–267.CrossRefGoogle Scholar
  35. Wang, S. M. & H. S. Dou, 1998. China lake record. Science Press, Beijing, China.Google Scholar
  36. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar
  37. Williams, B. L., J. D. Brawn & K. N. Paige, 2003. Landscape scale genetic effects of habitat fragmentation on a high gene flow species: Speyeria idalia (Nymphalidae). Molecular Ecology 12: 11–20.PubMedCrossRefGoogle Scholar
  38. Yue, G. H., Y. Li, L. C. Lim & L. Orban, 2004. Monitoring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture 237: 89–102.CrossRefGoogle Scholar
  39. Zhou, J., Q. Wu, Z. Wang & Y. Ye, 2004. Genetic variation analysis within and among six varieties of common carp (Cyprinus carpio L.) in China using microsatellite markers. Russian Journal of Genetics (Genetika) 40: 1144–1148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyThe Chinese Academy of SciencesWuhanChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations