Advertisement

Hydrobiologia

, Volume 588, Issue 1, pp 291–302 | Cite as

Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission

  • Josette GarnierEmail author
  • Gilles Billen
  • Aurélie Cébron
ECSA38

Abstract

A model of the ecological functioning of a drainage network (RIVERSTRAHLER: Billen, G., J. Garnier & Ph. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia, 289:119–137; Garnier, J., G. Billen & M. Coste, 1995. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the river Seine: Observations and modelling. Limnology and Oceanography. 40: 750–765), has been developed to describe nutrient (N, P, Si) transfer processes at the scale of the whole Seine Basin taking into account human activities such as agricultural practices, waterscape and urban wastewater management. Whereas the upstream basin is strongly influenced by intensive agriculture, leading to high nitrate concentrations, the lower Seine River and estuary are densely populated. Paris and its suburbs represent alone up to 60% of the population in the basin (10.106 inhabitants), causing large amounts of ammonium to be released by domestic effluents discharged downstream from Paris (of which the Achères wastewater treatment plant –WWTP- treated up to 80%). The ammonium loading is completely nitrified in the upstream fluvial estuary (300 km farther the effluent outlet), which leads to a strong oxygen deficit in summer. A conceptual representation of nitrification was constructed in which microbial compartments were taken explicitly into account, and the intermediate production of N2O included. On this basis a physiological analysis of the two stages of the nitrification by nitrifying bacteria (ammonium and nitrite oxidizing bacteria) was carried out, as a function of the controlling factors (O2, NH 4 + , NO 2 ; Brion, N. & G. Billen, 1998. Une réévaluation de la méthode d'incorporation de 14HCO3 pour mesurer la nitrification autotrophe et son application pour estimer les biomasses de bactéries nitrifiantes. Revue des Sciences de l'Eau, 11: 283–302; Cébron, A., J. Garnier & G. Billen 2005. Nitrous oxide production and nitrification kinetics by bacteria communities naturally present in river water (the lower Seine, France). Aquatic Microbial Ecolology, 41: 25–38). A mathematical formulation of the kinetics and the parameters values were incorporated into the general model of ecological functioning of the fluvial sector and freshwater estuary of the Seine River. N2O emissions due to denitrification were also considered. Results from summer field studies between 1998 and 2003 were used to validate the model which is able to reproduce the main spatial and temporal patterns of the activities of the microbial nitrifying communities as well as the levels of oxygen and nitrogen forms (NH 4 + , NO 2 , NO 3 N2O). Once validated, the model is used to examine the planned installation of a tertiary treatment at the Achères WWTP, scheduled for 2007 (a 90% reduction by nitrification of the presently discharged ammonium, and a 30% reduction of the nitrate by denitrification). The model shows that a nitrification treatment leads to a significant improvement in the oxygenation and a reduction of N2O emission. However, only further denitrification of urban effluents, expected in 2015, would significantly reduce the nitrogen delivery to the coastal zone.

Keywords

Human impact Modeling Nitrogen transformations Seine river Wastewater treatment scenarios 

Notes

Acknowledgements

This work was undertaken within the framework of the programmes Seine-Aval, funded by the Région Haute-Normandie and the Agence de l’Eau Seine-Normandie (AESN), and the PIREN-Seine funded by the CNRS and several institutions involved in the water management of the Seine River, including AESN and the Syndicat Interdépartemental pour l’Assainissement de l’Agglomération Parisienne (SIAAP).

References

  1. Bange, W. H., 2000. It’s not a gas Nature 408: 301–302.PubMedCrossRefGoogle Scholar
  2. Berner, R. A., 1980. Early diagenesis. A theoretical approach. Princeton University Press, 256 pp.Google Scholar
  3. Billen, G. & P. Servais, 1989. Modélisation des processus de dégradation de la matière organique en milieu aquatique. In Bianchi, M. et al. (ed.), Microorganisms dans les écosystèmes océaniques, Chap. 8. Masson, Paris, 219–245.Google Scholar
  4. Billen, G., S. Dessery, C. Lancelot & M. Meybeck, 1989. Seasonal and interannual variations of nitrogen diagenesis in the sediment of a recently impounded basin. Biogeochemistry 8: 73–100.CrossRefGoogle Scholar
  5. Billen, G., 1991. Protein degradation in Aquatic Environments. In Chrost, R. (ed.), Microbial Enzyme in Aquatic Environments. Springer Verlag, Berlin, 123–143.Google Scholar
  6. Billen, G., J. Garnier & Ph. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289: 119–137.CrossRefGoogle Scholar
  7. Billen, G., J. Garnier, N. Brion & N. Sanchez, 1998. Les transformations bactériennes de l’azote. Chapitre 13. In Meybeck, M., G. De Marsily & F. Fustec (eds), La Seine en son bassin. Fonctionnement écologique d’un système fluvial anthropisé. Elsevier, Paris, 567–592.Google Scholar
  8. Billen, G. & J. Garnier, 1999. Nitrogen transfers through the Seine drainage network: a budget based on the application of the Riverstrahler model. Hydrobiologia 410: 139–150.CrossRefGoogle Scholar
  9. Billen, G., J. Garnier, A. Ficht & C. Cun, 2001. Modelling the response of water quality in the Seine Estuary to human activity in its watershed over the last 50 years. Estuaries 24(6): 977–993.CrossRefGoogle Scholar
  10. Billen, G., J. Garnier & V. Rousseau, 2005. Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years. Hydrobiologia 540: 47–67.CrossRefGoogle Scholar
  11. Bonin, P., C. Tamburini & V. Michotey, 2002. Determination of the bacterial processes which are sources of nitrous oxide production in marine samples. Water Research 36: 722–732.PubMedCrossRefGoogle Scholar
  12. Bouwman, A. F., J. M. Boumans & N. H. Batjes, 2002. Emissions of N2O and NO from fertilied fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4), 6/1–6/12.Google Scholar
  13. Bultot, F. & G. Dupriez, 1976. Conceptual hydrological model for an average-sized catchment area. Journal of Hydrology 39: 251–292.CrossRefGoogle Scholar
  14. Brion, N. & G. Billen, 1998. Une réévaluation de la méthode d’incorporation de 14HCO3 pour mesurer la nitrification autotrophe et son application pour estimer les biomasses de bactéries nitrifiantes. Revue des Sciences de l’Eau 11: 283–302.Google Scholar
  15. Brion, N., G. Billen, L. Guézennec & A. Ficht, 2000. Distribution of nitrifying activity in the Seine river (France) from Paris to the estuary. Estuaries 23: 669–682.CrossRefGoogle Scholar
  16. Cébron, A., T. Berthe & J. Garnier, 2003. Nitrification and Nitrifying bacteria in the lower Seine River and estuary. Applied & Environmental Microbiology 69: 7091–7100.CrossRefGoogle Scholar
  17. Cébron, A., M. Coci, J. Garnier & H. J. Laanbroek, 2004. DGGE analysis of the Ammonia Oxidizing Bacterial Community structure in the lower Seine River: impact of the Paris wastewater effluents. Applied & Environmental Microbiology 70: 6726–6737.CrossRefGoogle Scholar
  18. Cébron, A., J. Garnier & G. Billen 2005. Nitrous oxide production and nitrification kinetics by bacteria communities naturally present in river water (the lower Seine, France). Aquatic Microbial Ecolology 41: 25–38.Google Scholar
  19. Chestérikoff, A., B. Garban, G. Billen & M. Poulin, 1992. Inorganic nitrogen dynamics in the river Seine downstream from Paris (France). Biogeochemistry 17: 147–164.CrossRefGoogle Scholar
  20. Colliver, B. B. & T. Stephenson, 2000. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18: 219–232.PubMedCrossRefGoogle Scholar
  21. Cugier, Ph., G. Billen, J.F. Guillaud, J. Garnier & A. Ménesguen, 2005. Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. Journal of Hydrology 304: 381–396.CrossRefGoogle Scholar
  22. Garban, B., D. Olivon, M. Poulin, V. Gaultier & A. Chesterikoff, 1995. Exchanges at the sediment-water interface in the River Seine, downstream from Paris. Water Research 29: 473–481.CrossRefGoogle Scholar
  23. Garcia-Ruiz, R., S. N. Pattinson & B. A. Whitton, 1998. Kinetic parameters of denitrification in a river continuum. Applied & Environmental Microbiology 64: 2533–2538.Google Scholar
  24. Garnier, J., P. Servais & G. Billen, 1991. Bacterioplankton in the Seine River: impact of the parisian urban effluents. Canadian Journal of Microbiology 38: 56–64.CrossRefGoogle Scholar
  25. Garnier, J., G. Billen & P. Servais, 1992. Physiological characteristics and ecological role of small and large bacteria in a polluted river (Seine River, France). Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 37: 83–94.Google Scholar
  26. Garnier, J. & G. Billen, 1993. Ecological interactions in a shallow sand-pit lake (Créteil Lake, France). A modelling approach. In: Nutrient dynamics and biological structure in shallow freshwater and brackish lakes. Hydrobiologia 275/276, 97–114.CrossRefGoogle Scholar
  27. Garnier, J., G. Billen & M. Coste, 1995. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the river Seine: Observations and modelling. Limnology and Oceanography. 40: 750–765.CrossRefGoogle Scholar
  28. Garnier, J., G., Billen, Ph. Hanset, P. Testard & M. Coste, 1998. Développement algal et eutrophisation. Chapitre 14. In Meybeck, M., G. De Marsily & F. Fustec (eds), La Seine en son bassin Fonctionnement écologique d’un système fluvial anthropisé. Elsevier, Paris, 593–626.Google Scholar
  29. Garnier, J., G. Billen & L. Palfner, 1999. Understanding the oxygen budget od the Mosel drainage network with the concept of heterotrophic/autotrophic sequences: the Riverstrahler approach. Hydrobiologia 410: 151–166.CrossRefGoogle Scholar
  30. Garnier, J., P. Servais, G. Billen, M. Akopian & N. Brion, 2001. The oxygen budget in the Seine estuary: balance between photosynthesis and degradation of organic matter. Estuaries 24(6): 964–977.CrossRefGoogle Scholar
  31. Garnier, J., G. Billen, E. Hannon, S. Fonbonne, Y. Videnina & M. Soulie, 2002. Modeling transfer and retention of nutrients in the drainage network of the Danube River. Estuarine and Coastal Shelf Science 54: 285–308.CrossRefGoogle Scholar
  32. Garnier, J. & G. Billen, 2002. The Riverstrahler modelling approach applied to a tropical case study (The Red–Hong-River, Vietnam): nutrient transfer and impact on the Coastal Zone. SCOPE, Collection of Marine Research Works 12: 51–65.Google Scholar
  33. Garnier, J., G. Billen & Ph. Cugier, 2004. Drainage basin use and nutrient supply by rivers to the coastal zone. A modelling approach to the Seine River. In Wassmann, P. & K. Olli (eds), Drainage basin nutrient inputs and eutrophication: an integrated approach, 60–87 E-book in press, 309 pp. available at: http://www.ut.ee/~olli/eutr/.
  34. Garnier, J., A. Cébron, G. Tallec, G. Billen, M. Sebilo & A. Martinez, 2006a. Nitrous oxide emission in the Seine River estuary (France): comparison with upstream sector of the Seine basin. Biogeochemistry 77: 305–326.CrossRefGoogle Scholar
  35. Garnier, J., L. Laroche & S. Pinault, 2006b. Determining the domestic specific loads of two wastewater plants of the Paris conurbation (France) with contrasted treatments: a step for exploring the effects of the application of the European Directive. Water Research 40: 3257–3266.PubMedCrossRefGoogle Scholar
  36. Gaskell, J. F., A. M. Blackmer & J. M. Bremmer 1981. Comparison of effects of nitrate, nitrite and nitric oxide on reduction of nitrous oxide to denitrogen by soil microorganisms. Proceedings of the Soil Science, Society of America 45: 1124–1127.CrossRefGoogle Scholar
  37. Green, P. A., C. J. Vörösmarty, M. Meybeck, J. N.Galloway, B. J. Peterson & E. W. Boyer, 2004. Pre-Industrial and Contemporary Fluxes of Nitrogen through Rivers: A Global Assessment Based on Typology. Biogeochemistry 68: 71–105.CrossRefGoogle Scholar
  38. Hanson, G. C., P. M. Groffman & A. J. Gold 1994. Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs. Journal of Environmental Quality 23: 917–922.CrossRefGoogle Scholar
  39. Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg & K. Maskell (eds), 1996. Climate change 1995. The Science of Published for Intergouvernmental panel on climate change, Cambridge Univ. Press, 1–572.Google Scholar
  40. Itokawa, H., K. Hanaki & T. Matsuo, 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research 353: 657–664.CrossRefGoogle Scholar
  41. Lancelot, C., C. Veth & S. Mathot, 1991. Modelling ice-edge phytoplankton bloom in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988. Journal of Marine System 2: 333–346.CrossRefGoogle Scholar
  42. McDowell, R. W., A. N. Sharpley & G. Folmar, 2003. Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agriculture, Ecosystems & Environment 99: 187–199.CrossRefGoogle Scholar
  43. Piterse, N. M., W. Bleuten & S. E. Jorgensen, 2003. Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. Journal of Hydrology 271: 213–225.CrossRefGoogle Scholar
  44. Poth, M. & D. D. Focht, 1985. N-15 kinetic analysis of N2O production by Nitrosomonas europaea -an examination of nitrifier denitrification. Applied & Environmental Microbiology 49: 1134–1141.Google Scholar
  45. Prosser, J. I., 1989. Autotrophic nitrification in bacteria. Advances in Microbial Physiology 30: 125–181.PubMedCrossRefGoogle Scholar
  46. Rasmussen, R. A. & M. A. J. Khalil, 1986. Atmospheric trace gases: trends and distribution over the last decade. Science 232: 1623–1624.CrossRefPubMedGoogle Scholar
  47. Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea. John Wiley & Sons, New York, 12–37.Google Scholar
  48. Sebilo, M., G. Billen, B. Mayer, D. Billiou, M. Grably, J. Garnier & A. Mariotti, 2006. Assessing nitrification and denitrification in the Seine River and Estuary using chemical and isotopic techniques. Ecosystems 9: 564–577.CrossRefGoogle Scholar
  49. Servais, P., J. Garnier, N. Demarteau, N. Brion & G. Billen, 1999. Supply of organic matter and bacteria to aquatic ecosystems through wastewater effluents. Water Research, 33: 3521–3531.CrossRefGoogle Scholar
  50. Sanchez, N., 1997. Le processus de dénitrification dans les sédiments du barrage-réservoir de la Marne: étude de sa cinétique et modélisation. Thèse Univ. P&M. Curie, 140 pp.Google Scholar
  51. Seitzinger, S. P. & C. Kroeze, 1998. Global distribution of nitrous oxide production and N inputs in freshwater and coastal ecosystems. Global Biogeochemical Cycles, 12: 93–113.CrossRefGoogle Scholar
  52. Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union. Vol. 38. No. 6.Google Scholar
  53. Wrage, N., G. L. Velthof, M. L. V. Beusichem & O. Oenema, 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33: 1723–1732.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Josette Garnier
    • 1
    Email author
  • Gilles Billen
    • 1
  • Aurélie Cébron
    • 1
  1. 1.UMR Sisyphe 7619, Fonctionnement des HydrosystèmesUniversité P. & M. Curie-CNRSParisFrance

Personalised recommendations