, Volume 588, Issue 1, pp 271–290 | Cite as

Typical features of particulate phosphorus in the Seine estuary (France)

  • Julien NémeryEmail author
  • Josette Garnier


During the 2001–2002 hydrological cycle, 8,000 tons P year−1 (44% as particulate phosphorus) originating from the Seine basin entered the Seine estuary. P content in suspended sediments (SS) is 2.9 g P kg−1 (80% as inorganic form) at Poses (the upstream limit of the Seine estuary). During the transfer from Poses to Caudebec (the limit of saline water intrusion), Particulate Inorganic Phosphorus (PIP) in SS decreases by 40% whereas Particulate Organic Phosphorus (POP) remains stable. This decrease is explained as the result of (i) a dilution by SS poorer in P, originating from storage zones (mudflats) within the estuary, and (ii) a loss of P by sedimentation, especially in the Rouen harbour where 15% to 20% of SS are yearly trapped and extracted. Downstream, in the turbidity maximum of the estuary, P content in SS is twice as low as at Poses (1.5 g P kg−1, 70% as inorganic form). PIP content is fairly homogeneous both vertically and throughout an annual survey. On the other hand, POP varies by season. Higher POP content is observed during vernal period with phytoplankton accumulation. In a salinity gradient from 0 to 30 (PSS78), PIP content further decreases by 30%. POP does not vary much in this gradient, leading to the assumption that PIP is submitted to desorption in response to the dilution by marine waters (poor in orthophosphates). Using 32P isotopic method, we establish a mathematical formulation of P exchangeable between the suspended solid and water phases of the Seine estuary. Particulate P in the turbidity maximum zone is shown to represent a possible source of dissolved P, available for algal growth in the Seine Bight. Instead of playing a role of nutrient retention, the turbidity maximum zone of the Seine estuary could favour coastal eutrophication.


Seine estuary Turbidity maximum zone Phosphorus dynamics 



This work was undertaken within the framework of the Seine-Aval program funded by the Région Haute-Normandie and the Agence de l’Eau Seine-Normandie. We are indebted to the colleagues of the laboratory “Morphodynamique Continentale et Côtière” at Rouen University for their logistic help during the study and especially to Robert Lafitte for sharing his knowledge in sediment dynamics of estuaries. We are also grateful to André Ficht from the Service de la Navigation de la Seine for providing useful data. Many thanks to Christian Morel (INRA Bordeaux), for his fruitful insight to the isotopic dilution method and his help for statistical data analysis, and to Gilles Billen (CNRS-Sisyphe) for constructive discussion.


  1. Aminot, A. & F. Andrieux, 1996. Concept and determination of exchangeable phosphate in aquatic sediments. Water Research 30: 2805–2811.CrossRefGoogle Scholar
  2. Aminot, A. & R. Kérouel, 2004. Hydrologie des systèmes marins, paramètres et analyses, Eds IFREMER, 336 p.Google Scholar
  3. Aminot, A., J.-F. Guillaud & F. Andrieux, 1993. Spéciation du phosphore et apports en baie de Seine orientale. Oceanologica Acta 16: 617–623.Google Scholar
  4. Aminot, A., J.-F. Guillaud, F. Andrieux-Loyer, R. Kérouel & P. Cann, 1998. Apports de nutriments et développement phytoplanctonique en baie de Seine. Oceanologica Acta 21: 923–935.CrossRefGoogle Scholar
  5. Aminot, A., J.-F. Guillaud & R. Kérouel, 1997. La baie de Seine: hydrologie, nutriments et chlorophylle (1978–1994). Edition IFREMER, repères Océan 14: 148 pp.Google Scholar
  6. Andrieux, F. & A. Aminot, 1997. A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Continental Shelf Research 17: 1229–1245.CrossRefGoogle Scholar
  7. Aspila, K. I., H. Agemian & A. S. Y. Chau, 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101: 187–197.PubMedCrossRefGoogle Scholar
  8. Barrow, N. J., 1978. The description of phosphate adsorption curves. Journal of Soil Science 29: 447–462.CrossRefGoogle Scholar
  9. Barrow, N. J., 1979. The description of phosphate desorption curves. Journal of Soil Science 30: 259–270.CrossRefGoogle Scholar
  10. Berner, R. A. & J.-L. Rao, 1994. Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea. Geochemica et Cosmochimica Acta 58: 2333–2339.CrossRefGoogle Scholar
  11. Billen, G., J. Garnier, A. Ficht & C. Cun, 2001. Modelling response of water quality in the Seine river estuary to human activity in its watershed over the last 50 years. Estuaries 24: 977–993.CrossRefGoogle Scholar
  12. Billen, G., J. Garnier, J. Némery, M. Sebilo, A. Sferratore, S. Barles & M. Benoit, 2007. A long term perspective on nutrient transfers through the Seine river continuum. The Science of the Total Environment doi:10.1016/j.scitotenv.2006.12.001.Google Scholar
  13. Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.Google Scholar
  14. Capblancq, J., L. Labroue & J. C. Fardeau, 1986. Echanges de phosphore entre les sédiments et l’eau. Influence de la dilution sur les cinétiques de traçage isotopique. Annals of Limnology 22: 277–283.CrossRefGoogle Scholar
  15. Chardon, W. J. & D. Blaauw, 1998. Kinetic Freundlich equation applied to soils with a high residual phosphorus content. Soil Science 163: 30–35.CrossRefGoogle Scholar
  16. Cloern, J. E., 2001. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. E & FN Spon, London, 415 p.Google Scholar
  17. Conley, D. J., W. M. Smith, J. C. Corwell & T. R. Fisher, 1995. Transformation of particle-bound phosphorus at the land-sea interfaces. Estuarine, Coastal and Shelf Science 40: 161–176.CrossRefGoogle Scholar
  18. Cugier, P., A. Ménesguen & J.-F. Guillaud, 2005a. Three dimensional (3D) ecological modelling of the Bay of Seine (English Channel, France). Journal of Sea Research 54: 104–124.CrossRefGoogle Scholar
  19. Cugier, P., G. Billen, J.-F. Guillaud, J. Garnier & A. Ménesguen, 2005b. Modelling the eutrophication of the Seine Bight (France) under historical, present and future nutrient loading. Journal of Hydrology 304: 381–396.CrossRefGoogle Scholar
  20. Dorioz, J. M., J. P. Pelletier & P. Benoit, 1998. Physico-chemical properties and bioavailbility of particulate phosphorus of various origin in a watershed of Lake Geneva (France). Water Research 32: 275–286.CrossRefGoogle Scholar
  21. Dupont, J. P., L. Guézennec, R. Lafite, P. Le Hir & P. Lesueur, 1999. Matériaux fins: le cheminement des particules en suspension. Fascicule thématique 4: Programme Seine-Aval, 39 pp.Google Scholar
  22. Dupont, J. P., R. Lafite, M. F. Huault, P. Hommeril & R. Meyer, 1994. Continental/marine ratio changes in suspended and settled matter accross a macrotidal estuary (The Seine estuary, northwester France). Marine Geology 120: 27–40.CrossRefGoogle Scholar
  23. Eberlein, K. & G. Kattner, 1987. Automatic method for the determination of orthophosphate and dissolved phosphorus in marine environment. Frezenius Zeitung fûr Analytische Chemie 326: 354–357.CrossRefGoogle Scholar
  24. Etcheber, H., A. Taillez, G. Abril, J. Garnier, P. Servais, F. Moatar & M.-V. Commarieu, 2007. Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia 588: 245–259.Google Scholar
  25. Fardeau, J. C., 1993. Le phosphore biodisponible des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie 3: 317–331.Google Scholar
  26. Froelich, P. N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography 33: 649–648.Google Scholar
  27. Garnier, J., G. Billen, P. Hanset, P. Testard & M. Coste, 1998. Développement algal et eutrophisation. Chapitre 14. In Meybeck, M., G. de Marsily & F. Fustec (eds), La Seine en son bassin Fonctionnement écologique d’un système fluvial anthropisé. Elsevier, Paris, 593–626.Google Scholar
  28. Garnier, J., P. Servais, G. Billen, M. Akopian & N. Brion, 2001. Lower Seine river and estuary (France): carbon and oxygen budgets during low flow. Estuaries 24: 964–976.CrossRefGoogle Scholar
  29. Garnier, J., G. Billen & Ph. Cugier, 2004a. Drainage basin use and nutrient supply by rivers to the coastal zone. A modelling approach to the Seine River. In Wassmann, P. & K. Olli (eds), Drainage Basin Nutrient Inputs and Eutrophication: An Integrated Approach, 60–87. E-book in press, 309 pp. [available on internet at].Google Scholar
  30. Garnier, J., A. Cébron, J. Némery, G. Billen, M. Sebilo, A. Martinez, S. Pinault & K. Tiphagne, 2004b. Dynamique des éléments nutritifs (N, P, Si) dans l’estuaire aval, RA 2003 Seine-Aval/Thème3, cd-rom, 27 pp.Google Scholar
  31. Garnier, J., J. Némery, G. Billen & S. Théry, 2005. Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. Journal of Hydrology 304: 397–412.CrossRefGoogle Scholar
  32. Garnier, J., G. Billen & A. Cébron, 2007. Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission. Hydrobiologia 588: 291–302.Google Scholar
  33. Golterman, H. L., 1982. Differential extraction of sediment phosphate with NTA solution. Hydrobiologia 92: 683–687.Google Scholar
  34. Guézennec, L., 1998. Hydrodynamique de transport en suspension du matériel particulaire fin dans la zone fluviale d’un estuaire macrotidal: l’exemple de l’estuaire de la Seine. PhD Thesis, University of Rouen, 222 pp.Google Scholar
  35. Guézennec, L., R. Lafite, J. P. Dupont, R. Meyer & D. Boust, 1999. Hydrodynamic of suspended particulate matter in the Tidal Freshwater Zone of a macrotidal estuary (The Seine estuary, France). Estuaries 22: 717–727.CrossRefGoogle Scholar
  36. Hieltjes, A. S. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcaerous sediment. Journal of Environmental Quality 9: 405–407.CrossRefGoogle Scholar
  37. House, W. A., T. D. Jickells, A. C. Edwards, K. Prastka & F. H. Denison, 1998. Reaction of phosphorus with sediments in fresh and marine waters. Soil Use and Management 14: 139–146.CrossRefGoogle Scholar
  38. Lafite, R., G. Bally, J. Deloffre, V. Mesnage, P. Lesueur, J.-C. Brun-Cottan, D. Boust, E. Douville, M. Rozet, G. Leclerc, L. Solier, A. Bochet, J. Leloup, L. Quillet, F. Petit, O. Clarisse, B. Ouddane, J.-C. Fischer, M. Wartel, D. Davoult, A. Migne, S. Lesourd, N. Spilmont, P. Miramand, D. Fichet, G. Blanchard, G. Radenac, H. Herman, T. Guyot & V. Huet, 2003. Projet DYVA: fonctionnement des vasières. Rapport de synthèse Seine-aval, 134 pp.Google Scholar
  39. Lancelot, C., V. Rousseau, G. Billen & D. Van Eeckhout, 1997. Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling. Sensitivity of North Sea, Baltic Sea and Black Sea to anthropogenic and climatic changes. NATO-ASI Series, 2: Environement, Berlin: Springer Verlag 27: 439–453.Google Scholar
  40. Lesourd, S., P. Lesueur, J.-C. Brun-Cottan, J.-P. Auffret, N. Poupinet & B. Laignel, 2001. Morphosedimentary evolution of a macrotidal estuary subjected to human impact; the example of the Seine (France). Estuaries 24: 940–949.CrossRefGoogle Scholar
  41. Mesnage, V., S. Bonneville, B. Laignel, D. Lefebvre, J.-P. Dupont & D. Mikes, 2002. Filling of a wetland (Seine estuary, France): natural eutrophication or anthropogenic process? A sedimentological and geochemical study of wetland organic sediments. Hydrobiologia 475/476: 423–435.CrossRefGoogle Scholar
  42. Meybeck, M., H. Dürr & C. Grosbois, 2002. Etablissement des flux polluants (nutriments, MES, carbone organique et métaux) dans les fleuves du bassin Seine-Normandie, dans la Somme et dans le Rhin. Rapport du programme LITEAU, 55 pp.Google Scholar
  43. Mignolet, C., C. Schott & M. Benoît, 2004. Spatial dynamics of agricultural practices on a basin territory: a retrospective study to implement models simulating nitrate flow. The case of the Seine basin. Agronomie (FRA) 24: 219–236.CrossRefGoogle Scholar
  44. Morel, C., 2002. Caractérisation de la phytodisponibilité du phosphore du sol par la modélisation du transfert des ions phosphates entre le sol et la solution. Habilitation à Diriger des Recherches Thesis, INRA-Bordeaux, Institut National Polytechnique de Lorraine, 80 pp.Google Scholar
  45. Morel, C., A. Schneider, D. Plénet & J. C. Fardeau, 2002. Transfer of phosphorus in soil-plant and soil-solution systems using isotopic labelling and dilution methods. In Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management. International Symposium, Vienna, 16–20 October 2000: 49–56. Joint FAO/IAEA Division Vienna. C&S Papers Series 11/C, 486 pp.Google Scholar
  46. Morel, C., H. Tunney, D. Plénet & S. Pellerin, 2000. Transfer of phosphate ions between soil and solution: perspectives in soil testing. Journal of Environmental Quality 29: 50–59.CrossRefGoogle Scholar
  47. Némery, J., 2003. Origine et devenir du phosphore dans le continuum aquatique de la Seine des petits bassins amont à l’estuaire: rôle du phosphore échangeable sur l’eutrophisation. Thèse de doctorat d’Etat de l’Université Paris VI, 258 pp.Google Scholar
  48. Némery, J., J. Garnier & C. Morel, 2005. Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs particulate forms. Biogeochemistry 72: 35–66.CrossRefGoogle Scholar
  49. Némery, J., & J. Garnier, 2007. Origin and fate of phosphorus in the Seine watershed (France): The agricultural and hydrographic P budget. JGR-Biogeosciences accepted.Google Scholar
  50. Nilsson, P. & M. Jansson, 2002. Hydrodynamic control of nitrogen and phosphorus turnover in an eutrophicated estuary in the Baltic. Water Research 36: 4616–4626.PubMedCrossRefGoogle Scholar
  51. Ohno, T. & L. Zibilske, 1991. Determination of low concentration of phosphorus in soil extracts using malachite green. Soil Science Society of America Journal 55: 892–895.CrossRefGoogle Scholar
  52. Owens, P. N. & D. E. Walling, 2002. The phosphorus content of fluvial sediment in rural and industrialized river basins. Water Research 36: 685–701.PubMedCrossRefGoogle Scholar
  53. Prastka, K., R. Sanders & T. Jickells, 1998. Has the role of estuaries as sources or sinks of dissolved inorganic phosphorus changed over time? Results of a K d study. Marine Pollution Bulletin 36: 718–728.CrossRefGoogle Scholar
  54. SAS Institute, 1995. SAS/STAT Version 6.11 edn. SAS Institute, Cary, NC.Google Scholar
  55. Schneider, A. & C. Morel, 2000. Relationship between the isotopically exchangeable and resin-extractable phosphate of deficient to heavily fertlized soil. European Journal of Soil Science 51: 709–715.CrossRefGoogle Scholar
  56. Sebilo, M., G. Billen, B. Mayer, D. Billiou, M. Grably, J. Garnier & A. Mariotti 2006, Assessing nitrification and denitrification in the Seine River and Estuary using chemical and isotopic techniques. Ecosystems 9(4): 564–577.CrossRefGoogle Scholar
  57. Smith, S. V., 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnology and Oceanography 29: 1149–1160.CrossRefGoogle Scholar
  58. Suzumura, M., H. Kokubun & N. Arata, 2004. Distribution and characteristics of suspended particulate matter in a heavily eutrophic, Tokyo Bay, Japan. Marine Pollution Bulletin 49: 496–503.PubMedCrossRefGoogle Scholar
  59. Svendsen, L. M., A. Redsdorf & P. Nørnberg, 1993. Comparison of methods for analysis of organic and inorganic phosphorus in river sediment. Water Research 27: 77–83.CrossRefGoogle Scholar
  60. Vaas, L. H., R. N. J. Comans, H. A. Das, J. M. M. Reith & C. H. van der Veijden, 1987. Isotopically exchangeable phosphate in freshwater sediments: effects of U.V.-radiation, formaldehyde, solid/solution ratio and pH on its experimental determination. Water Research 21: 1135–1142.CrossRefGoogle Scholar
  61. Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors of eutrophication. O.C.D.E. Paris, Technical Report, DA 5/SCI/68.27, 250 pp., 182 pp.Google Scholar
  62. Williams, J. D. H., H. Shear & R. L. Thomas, 1980. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from Great Lakes. Limnology and Oceanography 25: 1–11.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.UMR Sisyphe 7619, UMPC Paris 6ParisFrance

Personalised recommendations