Hydrobiologia

, Volume 588, Issue 1, pp 125–134 | Cite as

Sediment transfer and accumulation in two contrasting salt marsh/mudflat systems: the Seine estuary (France) and the Medway estuary (UK)

  • A. B. Cundy
  • R. Lafite
  • J. A. Taylor
  • L. Hopkinson
  • J. Deloffre
  • R. Charman
  • M. Gilpin
  • K. L. Spencer
  • P. J. Carey
  • C. M. Heppell
  • B. Ouddane
  • S. De Wever
  • A. Tuckett

Abstract

Understanding the dynamics of fine sediment transport across the upper intertidal zone is critical in managing the erosion and accretion of intertidal areas, and in managed realignment/estuarine habitat recreation strategies. This paper examines the transfer of sediments between salt marsh and mudflat environments in two contrasting macrotidal estuaries: the Seine (France) and the Medway (UK), using data collected during two joint field seasons undertaken by the Anglo-French RIMEW project (Rives-Manche Estuary Watch). High-resolution ADCP, Altimeter, OBS and ASM measurements from mudflat and marsh surface environments have been combined with sediment trap data to examine short-term sediment transport processes under spring tide and storm flow conditions. In addition, the longer-term accumulation of sediment in each salt marsh system has been examined via radiometric dating of sediment cores. In the Seine, rapid sediment accumulation and expansion of salt marsh areas, and subsequent loss of open intertidal mudflats, is a major problem, and the data collected here indicate a distinct net landward flux of sediments into the marsh interior. Suspended sediment fluxes are much higher than in the Medway estuary (averaging 0.09 g/m3/s), and vertical accumulation rates at the salt marsh/mudflat boundary exceed 3 cm/y. Suspended sediment data collected during storm surge conditions indicate that significant in-wash of fine sediments into the marsh interior can occur during (and following) these high-magnitude events. In contrast to the Seine, the Medway is undergoing erosion and general loss of salt marsh areas. Suspended sediment fluxes are of the order of 0.03 g/m3/s, and the marsh system here has much lower rates of vertical accretion (sediment accumulation rates are ca. 4 mm/y). Current velocity data for the Medway site indicate higher velocities on the ebb tide than occur on the flood tide, which may be sufficient to remobilise sediments deposited on the previous tide and so force net removal of material from the marsh.

Keywords

Suspended sediment Sedimentation 210Pb 137Cs Medway Seine Estuary 

References

  1. Burd, F., 1992. Erosion and vegetation change on the salt marshes of Essex and North Kent between 1973 and 1988. Research and Survey in Nature Conservation, No. 42, Nature Conservancy Council, Peterborough, U.K.Google Scholar
  2. Cundy, A. B. & I. W. Croudace, 1996. Sediment accretion and recent sea level rise in the Solent, southern England: inferences from radiometric and geochemical studies. Estuarine Coastal and Shelf Science 43: 449–467.CrossRefGoogle Scholar
  3. Cundy, A. B., I. W. Croudace, P. E. Warwick, J.-S. Oh & S. K. Haslett, 2002. Accumulation of COGEMA-La Hague-derived reprocessing wastes in French salt marsh sediments. Environmental Science and Technology 36: 4990–4997.PubMedCrossRefGoogle Scholar
  4. Cundy, A. B., I. W. Croudace, A. Cearreta & M. J. Irabien, 2003. Reconstructing historical trends in metal input in heavily-disturbed, contaminated estuaries: studies from Bilbao, Southampton Water and Sicily. Applied Geochemistry 18: 311–325.CrossRefGoogle Scholar
  5. Cundy, A. B., L. Hopkinson, R. Lafite, K. Spencer, J. A. Taylor, B. Ouddane, C. M. Heppell, P. J. Carey, R. Charman, D. Shell & S. Ullyott, 2005. Heavy metal distribution and accumulation in two Spartina sp.-dominated macrotidal salt marshes from the Seine estuary (France) and the Medway estuary (U.K.). Applied Geochemistry 20: 1195–1208.CrossRefGoogle Scholar
  6. French, P. W., 1999. Managed retreat: a natural analogue from the Medway estuary, UK. Ocean and Coastal Management 42: 49–62.CrossRefGoogle Scholar
  7. Le Hir, P., A. Ficht, R. S. Jacinto, P. Lesueur, J.-P. Dupont, R. Lafite, I. Brenon, B. Thouvenin & P. Cugier, 2001. Fine sediment transport and accumulations at the mouth of the Seine estuary (France). Estuaries 24(6B): 950–963.CrossRefGoogle Scholar
  8. Lesourd, S., P. Lesueur, J.-C. Brun-Cottan, J.-P. Auffret, N. Poupinet & B. Laignel, 2001. Morphosedimentary evolution of the macrotidal Seine estuary subjected to human impact. Estuaries 24(6B): 940–949.CrossRefGoogle Scholar
  9. Miramand, P., T. Guyot, H. Rybarczyk, B. Elkaim, P. Mouny, J. C. Dauvin & C. Bessineton, 2001. Contamination of the biological compartment in the Seine estuary by Cd, Cu, Pb and Zn. Estuaries 24(6B): 1056–1065.CrossRefGoogle Scholar
  10. Ritchie, J. C. & J. R. McHenry, 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality 19: 215–233.CrossRefGoogle Scholar
  11. Spencer, K. L., 2002. Spatial variability of metals in the inter-tidal sediments of the Medway estuary, Kent, U.K. Marine Pollution Bulletin 44: 933–944.PubMedCrossRefGoogle Scholar
  12. Spencer, K., A. B. Cundy & I. W. Croudace, 2003. Heavy metal distribution and early-diagenesis in salt marsh sediments from the Medway estuary, Kent, U.K. Estuarine Coastal and Shelf Science 56: 1–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • A. B. Cundy
    • 1
  • R. Lafite
    • 2
  • J. A. Taylor
    • 3
  • L. Hopkinson
    • 1
  • J. Deloffre
    • 2
  • R. Charman
    • 3
  • M. Gilpin
    • 4
  • K. L. Spencer
    • 5
  • P. J. Carey
    • 4
  • C. M. Heppell
    • 5
  • B. Ouddane
    • 6
  • S. De Wever
    • 2
  • A. Tuckett
    • 4
  1. 1.School of the EnvironmentUniversity of BrightonBrighton UK
  2. 2.CNRS/Université de RouenMont-Saint-Aignan CedexFrance
  3. 3.University of SussexBrightonUK
  4. 4.University of Greenwich (Medway Campus)Chatham MaritimeUK
  5. 5.Queen Mary University of LondonLondonUK
  6. 6.Universite de Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations