Advertisement

Hydrobiologia

, Volume 588, Issue 1, pp 13–29 | Cite as

An integrated modelling approach to forecast the impact of human pressure in the Seine estuary

  • S. Even
  • B. Thouvenin
  • N. Bacq
  • G. Billen
  • J. Garnier
  • L. Guezennec
  • S. Blanc
  • A. Ficht
  • P. Le Hir
ECSA38

Abstract

Within the framework of the European Water Framework Directive, the Seine-Normandie Water Agency has defined prospective scenarios describing possible trends of evolution of the pressures on water resources. In order to evaluate the resulting water quality improvement or degradation of water bodies in the Seine river basin, an integrated modelling was proposed. The approach consisted in coupling three models, the seneque model for upstream sub-basins, the ProSe model for the Seine river and main tributaries and finally the s i am1d model for the downstream estuary. After consistency verification, the integrated model was applied to scenarios proposed by the Seine-Normandie Water Agency. As a result of improvement in the nitrogen treatment by waste water treatment plants, the annual load of ammonia at the basin scale will be reduced by 65%. The oxygen and ammonia criteria in the estuary will improve from “bad” to “good”. However the nitrate criteria will remain “poor”, given the strong influence of non-point sources. Despite a 70–75% drop of the point orthophosphate loads, the criteria for this variable will also remain “poor”. The nutrient levels will be high enough to maintain eutrophication in the system; a general trend to a shift from N-limitation to P-limitation will be accentuated.

Keywords

Integrated modelling Aquatic ecosystems European Water Framework Directive Seine catchment Seine estuary Non-point and point sources Oxygenation Eutrophication 

Notes

Acknowledgements

This work, initiated by the Water Authority on the Seine Basin, has benefited from the knowledge gained in the framework of Research Projects on the Seine basin, namely the piren Seine and the Seine-aval, in which numerous research teams and institutions concerned with water problems are involved, such as the Water Authority in the Seine basin, the Seine Navigation Service (sns), the Interdistrict Federation for Sewage of Greater Paris (siaap), the Compagnie Générale des Eaux (cge). We thanks all the institutions involved in the sampling and diffusion of data (sns, siaap, cge) as well as the Laboratory of Aquatic Systems Ecology at the University of Brussels, that was greatly involved in the conceptual development of the rive model. We are grateful to the cereve at the École des Ponts et Chaussée, whose studies on wwtps and combined sewer overflow impacts, were to a large extend processed in this study.

References

  1. Abarnou, A., T. Burgeot, M. Chevreuil, F. Leboulenger, V. Loizeau, A. Madoulet-Jaouen, & C. Minier, 1999. Les contaminants organiques: quels risques pour le monde vivant. IFREMER.Google Scholar
  2. AESN & DIREN de bassin, 2003. État des lieux du district Seine et côtiers normands. Version 2.Google Scholar
  3. Billen, G. & J. Garnier, 1999. Nitrogen transfers through the seine drainage network: a budget based on the application of the riverstrahler model. Hydrobiologia 410: 139–150.CrossRefGoogle Scholar
  4. Billen, G., J. Garnier, A. Ficht, & C. Cun, 2001. Ecological modeling of the 50 last years of anthropogenic impact in the seine estuary. Estuaries 24: 977–993.CrossRefGoogle Scholar
  5. Billen, G., J. Garnier, & P. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: The RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289: 119–137.CrossRefGoogle Scholar
  6. Billen, G., J. Garnier, & V. Rousseau, 2005. Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years. Hydrobiologia 540: 1–3: 47–67.Google Scholar
  7. Billen, G., J. Garnier, P. Servais, N. Brion, A. Ficht, S. Even, T. Berthe, & M. Poulin, 1999. Programme scientifique Seine Aval., L’oxygène : un témoin du fonctionnement microbiologique. IFREMER.Google Scholar
  8. Billen, G. & P. Servais, 1989. Modélisation des processus de dégradation bactérienne de la matière organique en milieu aquatique. In Micro-organismes dans les écosystèmes océaniques. Masson, 219–245Google Scholar
  9. Brion, N., G. Billen, L. Guezennec, & A. Ficht, 2000. Distribution of nitrifying bacteria in the Seine river (France) from Paris to the estuary. Estuaries 23: 669–682.CrossRefGoogle Scholar
  10. Brown, L. C. & T. O. Barnwell, 1987. Enhanced stream water quality models, QUAL2E and QUAL2E UNCAS. Documentation and user’s TechReport. Department of civil Engineering, Tufts University, Medford, MA 02155. Environmental research laboratory office of research and development. U.S. Environmental Protection Agency. Rapport EPA/600/3-87/007.Google Scholar
  11. Conley, D. J., C. L. Schelde, & E. F. Stoermer, 1991. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series 101: 179–192.Google Scholar
  12. Cugier, P., G. Billen, J. F. Guillaud, J. Garnier, & A. Ménesguen, 2005. Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. Journal of Hydrology 304: 381–396.CrossRefGoogle Scholar
  13. Cugier, P. & P. Le Hir, 2000. Modélisation 3D des matières en suspension en baie de Seine orientale (Manche, France). Compte Rendu de l’Académie des Sciences. Science de la Terre et des planètes 331:287–294.Google Scholar
  14. Cugier, P., A. Ménesguen, & J.-F. Guillaud, 2001. Modélisation écologique tridimensionnelle (3d) de la baie de seine (manche, france). Hydroécologie Appliquée 13: 21–35.CrossRefGoogle Scholar
  15. de Jonge, V. N. & M. Elliot, 2001. Eutrophication. Academic Press, London, 3399 pp., 852–870Google Scholar
  16. de Jonge, V. N., M. Elliot, & E. Orive, 2002. Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475/476: 1–19.CrossRefGoogle Scholar
  17. de Jonge, V. N. & L. A. Villerius, 1989. Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnology and Oceanography 34: 332–340.CrossRefGoogle Scholar
  18. Even, S., A. Ficht, B. Thouvenin, J. Garnier, P. Servais, & P. Le Hir, 2004a. Modelling the carbon cycle in the turbidity maximum of the seine estuary. In Verhandlung Internationale Vereinigung für theoretische und angewandte Limnologie Accepted.Google Scholar
  19. Even, S., J.-M. Mouchel, M. Seidl, P. Servais, & M. Poulin, 2004b. Oxygen deficits in the Seine river downstream of combined sewer overflows: importance of the suspended matter transport. Ecological modelling 173: 177–196.CrossRefGoogle Scholar
  20. Even, S., J.-M. Mouchel, P. Servais, P. Le Hir, B. Thouvenin, M. Poulin, & J. Garnier, 2000. Suspended Matter and Ecological Behaviour of Rivers and Estuaries. Conceptual and Numerical Modelling. Verhandlung Internationale Vereinigung für theoretische und angewandte Limnologie 27: 238–241.Google Scholar
  21. Even, S., M. Poulin, J. Garnier, G. Billen, P. Servais, A. Chesterikoff, & M. Coste, 1998. River ecosystem modelling: application of the PROSE model to the Seine river (France). Hydrobiologia 373: 27–37.CrossRefGoogle Scholar
  22. Flipo, N., S. Even, M. Poulin, M.-H. Tusseau-Vuillemin, T. Améziane, & A. Dauta, 2004. Biogeochemical modelling at the river scale: plankton and periphyton dynamics: Grand Morin case study, France. Ecological Modelling 176: 333–347.CrossRefGoogle Scholar
  23. Fuhrman, J. & F. Azam, 1982.Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Marine Biology 66: 109–120.CrossRefGoogle Scholar
  24. Garnier, J., G. Billen, M. Akopian, & N. Brion, 2001. The oxygen budget in the seine estuary: balance between photosynthesis and degradation of organic. Estuaries 24: 964–977.CrossRefGoogle Scholar
  25. Garnier, J., G. Billen, & M. Coste, 1995. Seasonal succession of diatoms and chlorophycae in the drainage network of the river Seine: observations and modelling. Limnology and Oceanography 40: 750–765.CrossRefGoogle Scholar
  26. Garnier, J., G. Billen, E. Hannon, S. Fonbonne, Y. Videnina, & M. Soulie, 2002. Modelling the transfer and retention of nutrients in the drainage network of the Danube river. Estuarine, Coastal and Shelf Science 54: 285–308.CrossRefGoogle Scholar
  27. Garnier, J., G. Billen, P. Hanset, P. Testard, & M. Coste, 1998. La Seine en son bassin. Fonctionnement écologique d’un système fluvial anthropisé, Ch 14: Développement algal et eutrophisation. Elsevier, 593–626.Google Scholar
  28. Garnier, J., G. Billen, & L. Palfner, 1999. Understanding the oxygen budget of the mosel drainage network with the concept of heterotrophic/autotrophic sequences: the riverstrahler. Hydrobiologia, 410: 151–166.CrossRefGoogle Scholar
  29. Garnier, J., G. Billen, & P. Servais, 1992. Physiological characteristics and ecological role of small- and large-sized bacteria in a polluted river (Seine river, France). Archiv für Hydrobiologie Beihefte Ergebniss Limnologie 37: 83–94.Google Scholar
  30. Garnier, J., J. Nemery, G. Billen, & S. Théry, 2005. Nutrient dynamics and control of eutrophication in the marne river system: modelling the role of exchangeable phosphorus. Journal of Hydrology 304: 397–412.CrossRefGoogle Scholar
  31. Gomez, E., 2002. Modélisation intégrée du transfert de nitrate à l’échelle régionale dans un système hydrologique. Application au bassin de la Seine. Ph.D. thesis, École des Mines de Paris.Google Scholar
  32. Guérini, M.-C., J.-M. Mouchel, M. Meybeck, M.-J. Penven, G. Hubert, & T. Muxart, 1998. La Seine en son bassin. Fonctionnement écologique d’un système fluvial anthropisé, Chapter Le bassin de la Seine : la confrontation du rural et de l’urbain. Elsevier, 29–73.Google Scholar
  33. Guézennec, L., L.-A. Romana, R. Goujon, & R. Meyer, 1999. Programme scientifique Seine-Aval. Un estuaire et ses problèmes. IFREMERGoogle Scholar
  34. Howarth, R., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, & Z. Zhao-Liang, 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the north atlantic ocean: natural and human influences. Biogeochemistry 35: 75–139.CrossRefGoogle Scholar
  35. Kronvang, B., E. Jeppesen, D. J. Conley, M. Sondegaard, S. E. Larsen, N. N. Ovesen, & J. Carstensen, 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology 304: 274–288.CrossRefGoogle Scholar
  36. Lancelot, C., C. Veth, & S. Mathot, 1991. Modelling ice-edge phytoplankton bloom in the scotia-weddell sea sector of the southern ocean during spring 1988. Journal of Marine Systems 2: 333–346.CrossRefGoogle Scholar
  37. Le Hir, P., R. Silva Jacinto, B. Thouvenin, L. Guézennec, P. Bassoulet, P. Cugier, F. Leboulenger, R. Hocdé, P. Lesueur, & L. A. Romana, 1999. Programme scientifique Seine-Aval., Courants, vagues et marées : les mouvements de l’eau. IFREMER.Google Scholar
  38. Mallin, M. A., H. W. Pearl, J. Rudek, & P. W. Bates, 1993. Regulation of estuarine primary production by watershed rainfall and riverflow. Marine Ecology Progress Series 93: 199–203.Google Scholar
  39. Martin, L., 2001. Fonctionnement écologique de la Seine à l’aval de la station d’épuration d’Achères : données expérimentales et modélisation bidimensionnelle. Thèse de doctorat, École Nationale Supérieure des Mines de Paris.Google Scholar
  40. Millie, D., H. Carrick, P. Doering, & K. Steidinger, 2004. Intra annual variability of water quality and phytoplankton in the north fork of the saint lucie river estuary, florida (usa): a quantitative assessment. Estuarine, Coastal and Shelf Science 61: 137–149.CrossRefGoogle Scholar
  41. Mouchel, J.-M., P. Boët, G. Hubert, & M.-C. Guerrini, 1998. La Seine en son bassin. Fonctionnement écologique d’un système fluvial anthropisé, Ch: Un bassin et des hommes : une histoire tourmentée. Elsevier, 77–125.Google Scholar
  42. Némery, J., 2003. Origine et devenir du phosphore dans le continuum aquatique de la Seine des petits bassins amont à l’estuaire : rôle du phosphore échangeable sur l’eutrophisation. Ph.D. thesis, Paris VI.Google Scholar
  43. Némery, J. & J. Garnier, 2007. Typical features of particulate phosphorus in the Seine estuary (France). Hydrobiologia 588: 271–290.Google Scholar
  44. Paerl, H. W., J. L. Pinckney, J. M. Fera, & B. L. Peierls, 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying neuse river estuary. Marine Ecology Progess Series 166: 17–25.Google Scholar
  45. Reichert, P., D. Borchart, M. henze, W. Rauch, P. Shanahan, L. Somlyody, & P. Vanrolleghem, 2001. River water quality modelling no. 1: Ii. biochemical process equations. Water Sciences and Technology 43: 11–30.Google Scholar
  46. Richardson, K., 1997. Harmful or exceptional phytoplanktonic blooms in the marine ecosystem. Advances in Marine Biology 31: 302–385.CrossRefGoogle Scholar
  47. Ruelland, D. & G. Billen, 2002. Développements méthodologiques en matière de modèles et gestion de données. seneque 3, logiciel sig de modélisation prospective de la qualité des eaux de surface. rapport d’activité du piren seine. Technical report, PIREN Seine.Google Scholar
  48. Seidl, M., P. Servais, & J.-M. Mouchel, 1998. Organic matter transport and degradation in the river Seine (France) after a Combined Sewer Overflow. Water Research 32: 3569–3580.CrossRefGoogle Scholar
  49. Servais, P., 1989. Modélisation de la biomasse et de l’activité bactérienne dans la Meuse. Revue des Sciences de l’Eau 2: 543–563.Google Scholar
  50. Servais, P., G. Billen, J. Garnier, Z. Idlafikh, J.-M. Mouchel, M. Seidl, & M. Meybeck, 1998. ch 11: Carbone organique : origines et biodégradabilité. Elsevier, 483–525.Google Scholar
  51. Servais, P. & J. Garnier, 1993. Contribution of Heterotrophic Bacterial Production to the Carbon Budget of the River Seine (France). Marine Ecology 25: 19–33.Google Scholar
  52. Shanahan, P., M. Henze, L. Koncsocs, W. Rauch, P. Reichert, L. Somlyody, & P. Vanrolleghem, 1998. River water quality modelling: II. problems of the art. Water Sciences and Technology 38: 245–252.CrossRefGoogle Scholar
  53. Thouvenin, B., G. Billen, S. Even, J.-C. Fischer, J.-L. Gonzalez, P. Le Hir, V. Loizeau, J.-M. Mouchel, C. Olivier, & R. S. Jacinto, 1999. Programme scientifique Seine Aval., Les modèles outils de connaissance et de gestion. IFREMER.Google Scholar
  54. Trifu, C., 2002. Transfert des nutriments dans le basin du Danube et apports à la Mer Noire. Ph.D. thesis, University P. and M. Curie.Google Scholar
  55. Whitall, D., M. Castro, & C. Driscoll, 2004. Evaluation of management strategies for reducing nitrogen loadings to four us estuaries. Sciences of the Total Environment 333: 25–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. Even
    • 1
  • B. Thouvenin
    • 2
  • N. Bacq
    • 3
  • G. Billen
    • 4
  • J. Garnier
    • 4
  • L. Guezennec
    • 5
  • S. Blanc
    • 5
  • A. Ficht
    • 6
  • P. Le Hir
    • 7
  1. 1.Centre de GéosciencesÉcole des Mines de ParisFontainebleau cedexFrance
  2. 2.DEL/PC, IFREMERZone portuaire de BrégaillonLa Seyne Sur MerFrance
  3. 3.GIP Seine AvalRouenFrance
  4. 4.UMR Sisyphe 7619CNRS-Paris VIParisFrance
  5. 5.Agence de l’Eau Seine-NormandieNanterreFrance
  6. 6.Service de Navigation de la SeineRouenFrance
  7. 7.DEL/PC/TPIFREMER, BPPlouzaneFrance

Personalised recommendations