Advertisement

Hydrobiologia

, Volume 586, Issue 1, pp 261–275 | Cite as

Long-term lake acidification trends in high- and low-sulphate deposition regions from Nova Scotia, Canada

  • Brian K. Ginn
  • Brian F. Cumming
  • John P. Smol
Primary Research Paper

Abstract

Diatom-based paleolimnological techniques were used to study 14 lakes from two regions of Nova Scotia which represent regions of high and low sulphate deposition. Using decadal scale intervals, changes in diatom assemblages and diatom-inferred pH were tracked in relation to deposition of anthropogenic-sourced strong acids. Eight study lakes were located in Kejimkujik National Park in the southwestern part of the province, which receives an annual sulphate deposition (2000–2002) of ~10.5 kg ha−1 yr−1. These lakes showed significant changes in diatom assemblages with overall diatom-inferred acidification of ~0.5 pH units starting between 1925 and 1940, with the timing of acidification related to pre-industrial (or pre−1850) lakewater pH. Six study lakes were located in Cape Breton Highlands National Park, in northern Nova Scotia, a region of lower sulphate deposition. These lakes did not show any consistent trends in diatom assemblages or inferred pH values consistent with recent acidic deposition, but rather variations that may be related to climatic influences. Nova Scotia lakes that have been most impacted by acidic deposition had the lowest pre-industrial lakewater pH values and were in an area of relatively high sulphate deposition.

Keywords

Nova Scotia Acidification Diatoms Paleolimnology 

Notes

Acknowledgements

This study would not have been possible without the assistance of: Tom Clair, Environment Canada—Atlantic Region for providing water chemistry data for Nova Scotia; Parks Canada staff at Kejimkujik and Cape Breton Highlands National Parks of Canada; M. Rate, C. Chan, B. Keddy, and B. Keatley for field assistance. This study was funded by an NSERC Strategic Grant to JPS, BFC, and Peter Dillon; Ontario Graduate Scholarship and the R.S. McLaughlin Fellowship to BKG.

References

  1. Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques. Kluwer Academic Press, Dordrecht.Google Scholar
  2. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators. Kluwer Academic Press, Dordrecht.Google Scholar
  3. Binford, M. W., 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3: 253–267.CrossRefGoogle Scholar
  4. Battarbee, R. W., J. Mason, I. Renberg & J. F. Talling, 1990. Paleolimnology and lake acidification. Philosophical Transactions of the Royal Society of London B. 327.Google Scholar
  5. Camburn, K. E. & D. F. Charles, 2000. Diatoms of low-alkalinity lakes in the northeastern United States. Academy of Natural Sciences of Philadelphia Special Publication 18.Google Scholar
  6. Chapman, P. J., J. M. Clark, C. Evans & D. Monteith, 2005a. Increasing dissolved organic carbon concentrations in surface waters: climate change or recovery from acidification. Presented at 7th International Conference on Acid Deposition, Prague, Czech Republic.Google Scholar
  7. Chapman, P. J., J. M. Clark, B. Reynolds & J. K. Adamson, 2005b. The influence of organic acids in relation to atmospheric deposition in controlling the acid neutralizing capacity and acidity of soil and surface waters. Presented at 7th International Conference on Acid Deposition, Prague, Czech Republic.Google Scholar
  8. Charles, D. F. & J. P. Smol, 1990a. The PIRLA II project: regional assessment of lake acidification trends. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 474–480.Google Scholar
  9. Charles, D. F., R. W. Battarbee, I. Renberg, H. van Dam & J. P. Smol, 1990b. Paleoecological analysis of lake acidification trends in North America and Europe using diatoms and chrysophytes. In Norton, S. A., S. E. Lindberg & A. L. Page (eds), Acidic precipitation Vol. 4: soils, aquatic processes and lake acidification. Springer-Verlag, New York.Google Scholar
  10. Charles, D. F., S. S. Dixit, B. F. Cumming & J. P. Smol, 1991. Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. Journal of Paleolimnology 5: 267–284.CrossRefGoogle Scholar
  11. Clair, T. A., T. Pollock, G. Brun, A. Ouellet & D. Lockerbie, 2001a. Environment Canada’s acid precipitation monitoring networks in Atlantic Canada. Occassional Report No. 16. Environment Canada.Google Scholar
  12. Clair, T. A., A. G. Bobba & K. Miller, 2001b. Yearly changes in the seasonal frequency and duration of short-term acid pulses in some Nova Scotia, Canada streams. Environmental Geology 40: 582–591.CrossRefGoogle Scholar
  13. Clair, T. A., J. M. Ehrman, A. J. Ouellet, G. Brun, D. Lockerbie & C.-U. Ro, 2002. Changes in freshwater acidification trends in Canada’s Atlantic Provinces: 1983–1997. Water, Air, and Soil Pollution 135: 335–354.CrossRefGoogle Scholar
  14. Clymo, R. S., 1984. Sphagnum-dominated peat bog: a naturally acid ecosystem. Philosophical Transactions of the Royal Society of London B 305: 451–477.Google Scholar
  15. Cumming, B. F., J. P. Smol, J. C. Kingston, D. F. Charles, H. J. B. Birks, K. E. Camburn, S. S. Dixit, A. J. Uutala & A. R. Selle, 1992. How much acidification has occurred in Adirondack region lakes (New York, USA) since pre-industrial times? Canadian Journal of Fisheries and Aquatic Sciences 49: 128–141.CrossRefGoogle Scholar
  16. Cumming, B. F., K. A. Davey, J. P. Smol & H. J. B. Birks, 1994. When did acid-sensitive Adirondack lakes (New York USA) begin to acidify and are they still acidifying? Canadian. Journal of Fisheries and Aquatic Sciences 51: 1550–1568.CrossRefGoogle Scholar
  17. Davis, D. S. & S. Browne, 1996. The Natural History of Nova Scotia. Vol. 2: Theme regions. Nimbus Publishing, Halifax.Google Scholar
  18. Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. Journal of Paleolimnology 8: 27–47.CrossRefGoogle Scholar
  19. Ek, A. S. & T. Korsman, 2001. A paleolimnological assessment of the effects of post-1970 reductions of sulphur deposition in Sweden. Canadian Journal of Fisheries and Aquatic Sciences 58: 1692–1700.CrossRefGoogle Scholar
  20. Engstrom, D. R., 1987. Influence of vegetation and hydrology on humus budgets of Labrador lakes. Canadian Journal of Fisheries and Aquatic Sciences 44: 1306–1314.Google Scholar
  21. Fallu, M.-A., N. Allaire & R. Pienitz, 2000. Freshwater diatoms from northern Québec and Labrador (Canada). Bibliotheca Diatomologica 45: 1–200.Google Scholar
  22. Gavin, D. G., W. W. Oswald, E. R. Wahl & J. W. Williams, 2003. A statistical approach to evaluating distance metrics and analog assignments for pollen records. Quaternary Research 60: 356–367.CrossRefGoogle Scholar
  23. Ginn, B. K., 2006. Assessment of surface-water acidification using diatoms as paleoecological indicators in low alkalinity lakes in Nova Scotia (Canada) with a focus on lakes in Kejimkujik and Cape Breton Highlands National Parks. PhD dissertation. Dept. of Biology. Queen’s University, Kingston.Google Scholar
  24. Ginn, B. K., B. F. Cumming & J. P. Smol, (In Press). Assessing pH changes since pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada. Canadian Journal of Fisheries and Aquatic Sciences.Google Scholar
  25. Ginn, B. K., B. F. Cumming & J. P. Smol, (In Press). Diatom-based environmental inferences and model comparisons from 494 northeastern North American lakes. Journal of Phycology.Google Scholar
  26. Glew, J., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.CrossRefGoogle Scholar
  27. Glew, J., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.CrossRefGoogle Scholar
  28. Glew, J. R. G., Smol, J. P., Last, W. M., 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds), Tracking environmental change using lake sediments Vol 1: Basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht.Google Scholar
  29. Gorham, E., S. E. Bayley & D. W. Schindler, 1984. Ecological effects of acid deposition upon peatlands: a neglected field in “acid-rain” research. Canadian Journal of Fisheries and Aquatic Sciences 41: 1256–1268.CrossRefGoogle Scholar
  30. Gorham, E., J. K. Underwood, F. B. Martin & J. C. Ogden, 1986. Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature 324: 451–453.CrossRefGoogle Scholar
  31. Guhrén, M., C. Bigler & I. Renberg, 2007. Liming placed in a long-term perspective: a paleolimnological study of 12 lakes in the Swedish liming program. Journal of Paleolimnology 37: 247–258.CrossRefGoogle Scholar
  32. Hutson, W. H., 1980. The Agulhas Current during the late Pleistocene: analysis of modern faunal analogs. Science 207: 64–66.CrossRefPubMedGoogle Scholar
  33. Jeffries, D. S., D. C. L. Lam, I. Wong & M. D. Moran, 2000 Assessment of changes in lake pH in southeastern Canada arising from present levels and expected reductions in acidic deposition. Canadian Journal of Fisheries and Aquatic Sciences 57(Suppl. 2): 40–49.CrossRefGoogle Scholar
  34. Kaczmarksa, I., T. A. Clair, J. M. Ehrman, S. L. MacDonald, D. Lean & K. E. Day, 2000. The effect of ultraviolet B on phytoplankton populations in clear and brown temperate Canadian lakes. Limnology and Oceanography 45: 651–663.CrossRefGoogle Scholar
  35. Kerekes, J., G. Howell, S. Beauchamp & T. Pollock, 1982. Characterization of three lake basins sensitive to acid precipitation in central Nova Scotia (June 1979 to May 1980). Internationale Revue gesamten Hydrobiologie 67: 679–694.Google Scholar
  36. Kerekes, J., S. Beauchamp, R. Tordon, C. Tremblay & T. Pollock, 1986. Organic versus anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia. Water, Air, and Soil Pollution 31: 165–173.CrossRefGoogle Scholar
  37. Kortelainen, P., T. Mattsson, A. Laubel, D. Evans, G. Cauwet & A. Räike, 2004. Sources of dissolved organic matter from land. In Søndergaard, M. & D. N. Thomas (eds), Dissolved organic matter in aquatic ecosystems. The Domaine project.Google Scholar
  38. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1–4. In Ettel, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa 2/4. Spektrum Akademischer Verlag, Berlin.Google Scholar
  39. Krammer, K. & H. Lange-Bertalot, 1997. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettel, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa 2/2. Spektrum Akademischer Verlag, Berlin.Google Scholar
  40. Krammer, K. & H. Lange-Bertalot, 1999. Bacillariophyceae 1. Teil: Naviculaceae. In Ettel, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa 2/1. Spektrum Akademischer Verlag, Berlin.Google Scholar
  41. Krammer, K. & H. Lange-Bertalot, 2000. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettel, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa 2/3. Spektrum Akademischer Verlag, Berlin.Google Scholar
  42. Kullberg, A., K. H. Bishop, A. Hargeby, M. Jansson & R. C. Petersen, 1993. The ecological significance of dissolved organic carbon in acidified waters. Ambio 22:331–337.Google Scholar
  43. Laird, K. R., B. F. Cumming, S. Wunsam, J. Rusak, R. J. Oglesby, S. C. Fritz & P. R. Leavitt, 2003. Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proceedings of the National Academy of Sciences 100: 2483–2488.CrossRefGoogle Scholar
  44. Miettinen, J. O., H. Simola, E. Grönlund, J, Lahtinen & R. Niinioja, 2005. Limnological effects of growth and cessation of agricultural land use in Ladoga Karelia: Sedimentary pollen and diatom analyses. Journal of Paleolimnology 34: 228–243.CrossRefGoogle Scholar
  45. Moos, M. T., K. R. Laird & B. F. Cumming, 2005. Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. Journal of Paleolimnolgy 34: 217–227.CrossRefGoogle Scholar
  46. Overpeck, J. T., T. Webb & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23: 87–108.CrossRefGoogle Scholar
  47. Patrick, R. & C. W. Reimer, 1966. The diatoms of the United States, exclusive of Alaska and Hawaii Vol 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Monographs of the Academy of Natural Sciences of Philadelphia 13.Google Scholar
  48. Patrick, R. & C. W. Reimer, 1975. The diatoms of the United States, exclusive of Alaska and Hawaii Vol. 2 Part 1: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. Monographs of the Academy of Natural Sciences of Philadelphia 13.Google Scholar
  49. Petersen, R. C., A. Hargeby & A. Kullberg, 1987. The biological importance of humic materials in acidified waters. National Swedish Environmental Protection Board Report 3388. Solna.Google Scholar
  50. Pflaumann, U., J. Duprat, C. Pujol & L. D. Labeyrie, 1990. SIMMAX: a modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11: 15–35.CrossRefGoogle Scholar
  51. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms: biology and morphology of the genera. Cambridge University Press. Cambridge.Google Scholar
  52. Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Low-pre-industrial gamma counting: applications for 210Pb dating of sediments. Journal of Paleolimnology 10: 115–128.CrossRefGoogle Scholar
  53. Schindler, D. W., 1998. A dim future for boreal waters and landscapes. Bioscience 48: 157–164.CrossRefGoogle Scholar
  54. Shaw, R. W., 1979. Acid precipitation in Atlantic Canada. Environmental Science and Technology 13: 407–411.Google Scholar
  55. Simpson, G. L., E. M. Shilland, J. M. Winterbottom & J. Keay, 2005. Defining reference conditions for acidified waters using a modern analogue approach. Environmental Pollution 137: 119–133.PubMedCrossRefGoogle Scholar
  56. Smol, J. P., 2002. Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold Publishers, London.Google Scholar
  57. Smol, J. P., B. F. Cumming, A. S. Dixit & S. S. Dixit, 1998. Tracking recovery patterns in acidified lakes: A paleolimnological perspective. Restoration Ecology 6: 318–326.CrossRefGoogle Scholar
  58. Salonen, V., N. Tuovinen & S. Valpola, 2006. History of mine drainage impact on Lake Orijäryi algal communities, SW Finalnd. Journal of Paleolimnology 35: 289–303.CrossRefGoogle Scholar
  59. Søndergaard, M., F. Thingstad, C. Stedmon, T. Kraugh & G. Cauwet, 2004. DOM sources and microbes in lakes and coastal waters. In Søndergaard, M. & D. N. Thomas (eds), Dissolved organic matter in aquatic ecosystems. The Domaine project.Google Scholar
  60. Tropea, A. E., B. K. Ginn, B. F. Cumming & J. P. Smol, (In Press). Tracking long-term acidification trends in Pockwock Lake (Halifax, Nova Scotia, Canada), the water supply for a major eastern Canadian city. Lake and Reservoir Management.Google Scholar
  61. Underwood, J. K., H. H. Vaughn, J. G. Ogden & C. G. Mann, 1982. Acidification of Nova Scotia lakes II: ionic balances in dilute waters. Nova Scotia Dept. of the Environment.Google Scholar
  62. Underwood, J. K., J. G. Ogden, J. J. Kerekes & H. H. Vaughn, 1987. Acidification of Nova Scotia lakes III: atmospheric deposition of SO4 and NO3 and effects on urban and rural lakes. Water, Air, and Soil Pollution 32: 77–88.CrossRefGoogle Scholar
  63. Watt, W. D., 1987. A summary of the impact of acid rain on Atlantic salmon (Salmo salar) in Canada. Water, Air, and Soil, Pollution 35: 27–35.CrossRefGoogle Scholar
  64. Watt, W. D., C. D. Scott & W. J. White, 1983. Evidence of acidification in some Nova Scotia rivers and its impact on Atlantic salmon, Salmo salar. Canadian Journal of Fisheries and Aquatic Sciences 40: 462–473.Google Scholar
  65. Watt, W. D., C. D. Scott, P. J. Zamora & W. J. White, 2000. Acid toxicity levels in Nova Scotian rivers have not declined in synchrony with the decline in sulfate levels. Water, Air, and Soil Pollution 118: 203–229.CrossRefGoogle Scholar
  66. Wehr, J. D. & R. G. Sheath, 2002. Freshwater algae of North America. Academic Press, New York.Google Scholar
  67. Whitfield, C. J., 2005. An assessment of the acidification and recovery of headwater catchments in Nova Scotia, Canada using soil-chemical models. MSc Thesis. Dept. of Chemistry. Trent University, Peterborough.Google Scholar
  68. Wiltshire, J. F. & J. R. Machell, 1981. A study of acidification in sixteen lakes in mainland Nova Scotia and southern New Brunswick. Environmental Protection Service, Halifax.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Brian K. Ginn
    • 1
  • Brian F. Cumming
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations