Advertisement

Hydrobiologia

, Volume 584, Issue 1, pp 121–132 | Cite as

Combining limnological and palaeolimnological approaches in assessing degradation of Lake Pskov

  • Mihkel Kangur
  • Külli Kangur
  • Reet Laugaste
  • Jaan-Mati Punning
  • Tõnu Möls
Shallow Lakes

Abstract

Limnological monitoring data and palaeorecords from large shallow Lake Pskov were used to study the long-term dynamic pattern of the lake ecosystem and to identify the start of its degradation. Lake Pskov is the southern part of Lake Peipsi s.l., the largest transboundary lake in Europe. The limnological monitoring data collected in the years 1956–2005 show that the water quality of L. Pskov has deteriorated and caused adverse changes in the whole ecosystem (e.g. excessive growth of algae, increased cyanobacterial blooms, silting of the lake bottom, fish kills). Doubled total phosphorus (Ptot), dissolved inorganic P (PO4-P) and chlorophyll a (Chl-a) contents, increased total alkalinity (HCO 3 - ) and pH, as well as decline in water transparency and oxygenation conditions, indicate a clear increase in the trophic level of the lake. However, the limnological studies do not show when the degradation started. To understand long-term dynamics of the lake ecosystem, a 52 cm sediment core taken from one monitoring station of L. Pskov was studied and dated by the 210Pb method. Palaeodata show that substantial changes in the L. Pskov ecosystem started already in the 1930s when mesotrophic conditions in the lake turned increasingly eutrophic. Since that time, the content of P, nitrogen (N), carbon (C) and relative abundance (RA%) of planktonic diatoms in the sediment have increased significantly (P < 0.005–0.030). Comparison of water variables with the sediment variables in five to eight time points, coinciding in palaeorecords and monitoring data, reveals several significant correlations. Strong and highly significant Spearman correlations (r > 0.9 or r < −0.9, P < 0.001) were observed between the contents of P, N, C and sulphur (S) in the sediment and the mean water level (WL) and temperature (WT) registered one to five years earlier in the lake. The C content of the sediment showed a negative relationship with WL and a positive correlation with WT. A significant positive relationship was recorded also between WT, and N and P content in the sediment. It is hypothesized that a higher WT and lower WL result in an increased organic mater accumulation in the sediment in the coming years.

Keywords

Large shallow lake Eutrophication Time-series data Palaeorecords Diatoms 

Notes

Acknowledgements

The authors are indebted to the Estonian Science Foundation (grants 6855, 6820 and 6008) for financial support. This research was supported by the Estonian target financed projects SF 0362483s03 and SF SF0282120s02. We are grateful to the reviewers for their constructive comments.

Supplementary material

10750_2007_3231_Appendix 1.doc (44 kb)
ESM1 (DOC 44 kb)

References

  1. Anderson, N. J., E. Jeppesen & M. Søndergaard, 2005. Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwater Biology 50: 1589–1593.CrossRefGoogle Scholar
  2. Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Goodfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210-Pb dating by low-background gamma counting. Hydrobiologia 143: 21–27.CrossRefGoogle Scholar
  3. Battarbee, R. W., 1978. Relative composition, concentration and calculated influx of diatoms from a sediment core from Lough Erne, Northern Ireland. Polish Archive Hydrobiology 25: 9–16.Google Scholar
  4. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Vol. 3 – Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, 155–202.Google Scholar
  5. Battarbee, R. W., N. J. Anderson, E. Jeppesen & P. R. Leavitt, 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772–1780.CrossRefGoogle Scholar
  6. Chambers, F. M. (ed.), 1993. Climate Change and Human Impact on the Land. Chapman & Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras.Google Scholar
  7. Davydova, N., 1999. Flora in the surficial layer. Diatoms. In Miidel, A. & A. Raukas (eds), Lake Peipsi. Geology. Sulemees Publishers, Tartu, 80–86.Google Scholar
  8. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community Action in the field of water policy. Official Journal of the European Communities L327/1–72 (22.12.2000).Google Scholar
  9. Gulati, R.D. & E. van Donk, 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia 478: 73–106.CrossRefGoogle Scholar
  10. Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrofication. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Envisronmental and Earth Sciences. Cambridge University Press, Cambridge, 128–168.Google Scholar
  11. Jaani, A., 2001a. The location, size and general characterization of Lake Peipsi and its catchment area. In Nõges, T. (ed.), Lake Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu, 10–17.Google Scholar
  12. Jaani, A., 2001b. Water regime. In Nõges, T. (ed.), Lake Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu, 65–72.Google Scholar
  13. Kangur, K., A. Milius, T. Möls, R. Laugaste & J. Haberman, 2002. Lake Peipsi: Changes in nutrient elements and plankton communities in the last decade. Journal of Aquatic Ecosystem Health and Management 5: 363–377.CrossRefGoogle Scholar
  14. Kangur, K., T. Möls, A. Milius & R. Laugaste, 2003. Phytoplankton response to changed nutrient level in Lake Peipsi (Estonia) in 1992–2001. Hydrobiologia 506–509: 265–272.CrossRefGoogle Scholar
  15. Kangur, K., A. Kangur, P. Kangur & R. Laugaste, 2005. Fish kill in Lake Peipsi in summer 2002 as a synergistic effect of cyanobacterial bloom, high temperature and low water level. Proceedings of the Estonian Academy of Sciences. Biology Ecology 54: 67–80.Google Scholar
  16. Krammer, K. & H. Lange-Bertalot, 1986: 1988: 1991. Bacillariophyceae. Teil 1–4. Süsswasserflora von Mitteleuropa 2(1), 846 pp.; 2(2), 596 pp.; 2(3), 576 pp.; 2(4), 437 pp.Google Scholar
  17. Laugaste, R. & M. Pork, 1996. Diatoms of Lake Peipsi-Pihkva: a floristic and ecological review. Hydrobiologia 338: 63–76.CrossRefGoogle Scholar
  18. Laugaste, R., T. Nõges, P. Nõges, V. V. Jastremskij, A. Milius & I. Ott, 2001. Algae. In Pihu, E. & J. Haberman (eds), Lake Peipsi. Flora and Fauna. Sulemees Publishers, Tartu, 31–49. .Google Scholar
  19. Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9: 109–127.CrossRefGoogle Scholar
  20. Milius, A., R. Laugaste, T. Möls, M. Haldna & K. Kangur, 2005. Weather conditions and water level as factors determining phytoplankton biomass and nutrient content in Lake Peipsi. Proceedings of the Estonian Academy of Sciences. Biology Ecology 54: 5–17.Google Scholar
  21. Moss, B., T. Barker, D. Stephen, A. E. Williams, D. Balayla, M. Beklioglu & L. Carvalho, 2005. Consequences of reduced nutrient loading on a lake system in a lowland catchment: deviations from the norm? Freshwater Biology 50: 1687–1705.CrossRefGoogle Scholar
  22. Möls, T., 2005. Linear statistical methods for Estonian freshwater waterbodies. Estonian Naturalists’ Society, Tartu, 256 p. (in Estonian with English summary).Google Scholar
  23. Padisák, J. & I. Koncsos, 2002. Trend and noise: long-term changes of phytoplankton in the Keszthely Basin of Lake Balaton, Hungary. Verhandlungen Internationale Vereinigung Limnology 28: 194–203.Google Scholar
  24. Punning, J. M., M. Kangur, T. Koff & G. Possnert, 2003. Holocene lake-level changes and their reflection in the paleolimnological records of two lakes in northern Estonia. Journal of Paleolimnology 29: 167–178.CrossRefGoogle Scholar
  25. Rippey, B. N., N. M. Anderson & R. H. Foy, 1997. Accuracy of diatom-inferred total phosphorus concentrations and the accelerated eutrophication of a lake due to reduced flushing and increased internal loading. Canadian Journal of Fisheries and Aquatic Sciences 54: 2637–2646.CrossRefGoogle Scholar
  26. SAS Institute Inc. 1999. SAS OnlineDoc, Version 8. Cary, NC, SAS Institute Inc.Google Scholar
  27. Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. Journal of Aquatic Ecosystem Health 1: 49–58.CrossRefGoogle Scholar
  28. Snoeijs, P., 1989. A check-list of the benthic diatoms at Forsmark (northern Baltic Sea). I. Epilithic and epiphytic taxa. Annales Botanicy Fennicy 26: 427–387.Google Scholar
  29. Starast, H., A. Milius, T. Möls & A. Lindpere, 2001. Hydrochemistry of Lake Peipsi. In Nõges, T. (ed.), Lake Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu, 97–131.Google Scholar
  30. Stålnacke, P., Ü. Sults, A. Vasiliev, B. Skakalsky, A. Botina, G. Roll, K. Pachel, & T. Maltsman, 2002. An assessment of riverine loads of nutrients to Lake Peipsi, 1995–1998. Archiv für Hydrobiology 141: 437–457.Google Scholar
  31. Trifonova, I. & S. Genkal, 2001. Species of the genus Aulacoseira Thwaites in lakes and rivers of north-western Russia. Distribution and ecology. In Economou-Amilli, A. (ed.), Proceedings 16th International Diatom Symposium. University of Athens, Greece, 315–323.Google Scholar
  32. Utermöhl, H., 1958. Zur Vervollkommung der quantitatieven Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung Limnologie 9: 1–38.Google Scholar
  33. Vilbaste, S., K. Sundbäck, C. Nilsson, & J. Truu, 2000. Distribution of benthic diatoms in the littoral zone of the Gulf of Riga, the Baltic Sea. European Journal of Phycology 35: 373–384.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Mihkel Kangur
    • 1
  • Külli Kangur
    • 2
  • Reet Laugaste
    • 2
  • Jaan-Mati Punning
    • 1
  • Tõnu Möls
    • 2
  1. 1.Institute of Ecology at Tallinn UniversityTallinnEstonia
  2. 2.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannuEstonia

Personalised recommendations